بررسی کانی‌شناسی و رفتار عناصر نادر‌خاکی (REE) در زون‌های دگرسان گرمابی توده گرانیتوئیدی آستانه (جنوب‌باختری اراک، استان مرکزی)

نویسندگان

دانشگاه تهران

چکیده

توده گرانیتوئیدی آستانه در 40 کیلومتری شهرستان اراک قرار گرفته و بخشی از زون ساختاری سنندج-‌ سیرجان را در باختر ایران تشکیل می‌دهد. بیشتر این توده نفوذی از سنگ­های گرانودیوریتی تشکیل شده و به‌طور گسترده­ای دستخوش دگرسانی گرمابی شده است. توصیف این زون­های دگرسان بر اساس بررسی­های صحرایی، کانی‌شناسی و رفتار عناصر نادرخاکی (REE) موضوع این مقاله است. در گستره مورد بررسی هشت زون دگرسان گرمابی شامل زون فیلیک (سریسیتی) با انبوهه­هایی از کوارتز، سریسیت و پیریت؛ کلریتی با مجموعه کوارتز، سریسیت، و کلریت؛ پروپیلیتی با مجموعه کانی‌های کلریت، اپیدوت، کلسیت و آلبیت؛ آرژیلیتی با فراوانی بیشتر کانی­های رسی (کلریت و ایلیت)؛ سیلیسی با فراوانی کوارتز؛ آلبیتی با کانی‌های آلبیت، کلریت؛ و کوارتز؛ هماتیتی با انبوهه­هایی از هماتیت، کربنات­های آهن (آنکریت و سیدریت)؛ و بالاخره کلریت تورمالینی شده با کانی شاخص تورمالین (دراویت) قابل شناسایی هستند. نتایج حاصل نشان می‌دهند که تفاوت­های چشمگیری در رفتار REE‌ها، در زون‌های مختلف دگرسان این منطقه وجود دارد به طوری‌که در زون دگرسان سریسیتی LREE‌ها غنی شده‌اند، ولی الگوی HREEها (به استثنای Yb که غنی شده است) در مقایسه با سنگ نادگرسان‌ معادل خود، تغییری نمی‌کند. در زون دگرسان کلریتی LREE‌ها تهی‌شده‌اند ولی HREE‌ها رفتارهای متفاوتی نشان می‌دهند. در زون‌های دگرسان پروپیلیتی و آرژیلیتی همه REE‌ها تهی شده‌اند ولی LREE‌ها در مقایسه با HREE ها تهی‌‌شدگی بیشتری نشان می‌دهند، و در زون دگرسان سیلیسی و هماتیتی LREE‌ها در مقایسه با HREE‌ها غنی‌شد‌گی نشان می‌دهند، و با‌لاخره در زون دگرسان آلبیتی و زون تورمالینی همه REE‌ها تهی شده‌اند. این ویژگی‌ها نشان می‌دهند که رفتار REEها در زون‌های دگرسان گرمابی توده گرانیتوئیدی آستانه در‌واقع به‌واسطه PH، حضور آمیخته­های یونی در شاره و وجود کانی­های ثانویه‌ای که بتوانند REE‌ها را در ساختار خود بپذیرند، کنترل می‌شوند.

کلیدواژه‌ها


عنوان مقاله [English]

The study of the mineralogy and Rare Earth Elements (REE) behavior in the hydrothermal alteration zones of the Astaneh granitoid massif (SW Arak, Markazi province, Iran)

چکیده [English]

The Astaneh granitoid massif is located about 40 km to Arak city, central Iran, is a part of Sanandaj-Sirjan structural Zone. These intrusive rocks which are mainly composed of grnodioritic rocks, widely affected under hydrothermal alteration. The alteration zones, on the basis of field studies and mineralogy as well as the study of the REE behavior, are investigated in this paper. Eight alteration zones including phyllic (sericitic) with quartz, sericite and pyrite; chloritic with quartz, sericite and chlorite; propylitic with chlorite, epidot, calcite and albite; argillic with clay minerals (chlorite and illite); silicic with abundant quartz; albitic with albite, chlorite and quartz; hematitisation with hematite, Fe-carbonates (ankerite and siderite) and tourmalinisation with tourmaline (dravite) are identified. The results demonstrate notable differences in the REE behavior in the different alteration zones. Accordingly, comparison with the fresh rocks, in the phyllic (sericitic) alteration, LREE are enriched, but HREE, except Yb which enriched, unchanged. Also in chloritic alteration zone, LREEs are depleted, but HREEs represent different behaviors. In the argillic and propylitic alteration zones, all REE are depleted, but compared with HREE, the LREE represent more depletion. In the silicic and hematitisation alteration zones, compared with HREE, the LREE are enriched. Finally, in the albitic and tourmalinisation alteration zones all REE are depleted. These features indicate that the behavior of REE in the hydrothermal alteration zones of the Astaneh granitoid rocks is mainly controlled by PH, availability of complexing ions in the fluid as well as the presence of secondary phases as host REE minerals.

کلیدواژه‌ها [English]

  • Astaneh
  • Rare Erth Element (REE)
  • hydrothermal alteration
[1] Palacios C.M., Hein U.F., Dulski P., “Behaviour of rare earth elements during hydrothermal alteration at the Buena Esperanza copper-silver deposit, northern Chile”, Earth planet. Sci. Lett. 80, 1986, 208-216.

[2] Michard A., Albared F., 1986., “The REE content of some hydrothermal fluids”, Chem. Geol. 55, 51-60.

[3] Michard A., “Rare earth element systematics in hydrothermal fluid. Geochim”, Cosmochim. Acta 53, 1989, 745-750.

[4] Lewis A.J., Palmer M.R., Sturchio N.C., Kemp A.J., “The rare earth element geochemistry of acid-sulphate and acid-sulphate-chloride geothermal systems from Yellowstone National Park, Wyoming, USA”, Geochim. Cosmochim. Acta 61, 1997, 695-706.

[5] Alderton D. H. M., Pearce J. A., Potts P. J., “Rare earth element mobility during granite alteration: evidence from southwest England”, Earth Planet. Sci . Lett., 49, 1980, 149-165.

[6] Taylor R.P., Fryer B.J., “Multi-stage hydrothermal alteration in porphyry copper systems in northern Turkey: the temporal interplay of potassic, propylitic and phyllic fluids”, Can. J. Earth Sci. 17, 1980, 901-926.

[7] Hopf S., “behaviour of rare earth elements in geothermal systems of New Zealand”, J. Geochem. Explor. 47, 1993, 333-357.

[8] Arribas Jr., A., “Epithermal high-sulfidation deposits-a review”, In: Thompson, J.F.H. (Ed), Magmas, Fluids and Ore Deposits. Mineralogical Association of Canada, Short Course, 23, 1995, 419-454.

[9] Wood S.A., “The aqueous geochemistry of the rare earth elements and yttrium: 2. Theoritical prediction of speciation in hydrothermal solutions to 350C at saturation water vapour pressure”, Chem. Geol. 88, 1990, 99-125.

[10] Haas J.R., Shock E.L., Sassani D.C., “Rare earth elements in hydrothermal systems: estimates of standard partial molal thermodynamic properties of aqueous complexes of the rare earth elements at high pressures and temperatures”, Geochim. Cosmochim. Acta 59, 1995, 4329-4350.

[11] Rollinson H.R., “Using Geochemical Data: Evaluation, Presentation”, Interpretation. Longman Scientific & Technical, 352, 1993.

]12[ خوئی ن.،”زایش طلا در گرانیت‌های آستانه“، گزارش داخلی سازمان زمین‌شناسی کشور (1361).

]13[ سهندی م.ر.، رادفر ج.، حسینی‌دوست س.ج.، محجل م.، ” نقشه زمین‌شناسی 1:100000 شازند“، سازمان‌زمین‌شناسی و اکتشافات معدنی کشور (1385) برگ شماره 5857.

]14[ رادفر ج.، ”بررسی زمین‌شناسی و پترولوژی سنگ‌های گرانیتوئیدی ناحیه آستانه-گوشه“، پایان‌نامه کارشناسی ارشد، دانشکده علوم دانشگاه تهران (1366) 109 صفحه.

]15[ هاشمی م.، ”نحوه کانی‌سازی طلا در آستانه اراک“، پایان‌نامه کارشناسی ارشد، دانشکده علوم دانشگاه تربیت معلم (1380) 150 صفحه.

]16[ کریم‌پور م.ح.، سعادت س.، ”زمین‌شناسی اقتصادی کاربردی“، انتشارات دانشگاه فردوسی مشهد (1381).

[17] Montoya J. W., Hemley J. J., “Activity relations and stabilities in alkalai feldspar and mica alteration reactions”, Econ Geol., 70, 1975, 577-594.

[18] Van middelaar. W.T., Keith J.D., “Mica chemistry as an indicator of oxygen and halogen fugacities in the Can Tung and other W- related















granitoids in the North American cordillera”, Ore bearing granite system, 1990, pp 205-220.

[19] Pirajno., “Hydrothermal Mineral deposits”, 1992, 703p.

[20] Zaluski G, Nesbitt B,Muehlenbachs K., “Hydrothermal alteration and stable isotope systematics of the Babine Porphyry Cu deposits”, British Columbia: Implication for fluid evolution of porphyry systems: Econ. Geol. 89, 1994, 1518-1541.

[21] Cox K.G., Bell J. D., Pandhurst R.G., “The interpretation of igneous rocks: London”, George Allen 8 unwin, 1979, 450p.

[22] Titley S. R., Beane R. E., “’Porphyry cooper deposits: Econ Geol.”, 75 Th Ann. 1981, pp. 214- 269.

[23] Giggenbach W.F., “The origin and evoulution of fluids in magmatic-hydrothermal ore deposits”, 3rd end. John Wiley, New York, 1977, pp 737-796.

[24] Le Fort P., “Les leucogranitees a tourmaline de l Himalaya sur l exemle du granite du Manaslu (Nepal central)”, Bell. Soc. Geol. Fr., 7, XV, 1973: 555-561.

[25] Sun S.S., Mcdonough W.F., “Chemical and isotopic systematic of oceanic basalts: Implication for mantle composition and processes”, Geological society of London, spec. pub, 42, 1989, 313-345.

[26] Sverjensky D.A., 1984, “Europium redox equilibria in aqueous solution”, Earth Planet. Sci. Lett. 67, 70-78.

[27] Wendlandt R.F., Harison W. J., 1979., “Rare earth partitioning between immiscible carbonate and rare earth enriched rocks”, Cotri 6. Mineral Petrol. 69, 409-419.

[28] Fulignati P., Gioncada A., Sbrana A., “Rare earth element behaviour in the alteration facies of the active magmatic-hydrothermal system of Volcano (Aeolian Islands, Italy)”, Jurnal of Volcanology and geothermal research. 88, 1998, 325-342.