Investigating mineralogy, geochemistry and provenance of loess deposits, Golestan Province, northeast of Iran

Abstract

Little information is available on the provenance, evolutionary trend and characteristics of the loess deposits in northeast Iran. These deposits are thought to be related to Quaternary paleoclimate. Studies of mineralogical, surface textures and geochemical composition and trace elements in these loesses in Golestan Province suggest that they are mostly derived from felsic igneous rocks (granitic or granodioritic). The studied loess samples display uniform chemical composition, suggesting a similar alteration history. Chemical index of alteration suggest a weak to moderate degree of weathering in a felsic source area. Whole-rock analyses indicate that the abundance and composition of heavy minerals such as zircon, tourmaline, apatite, titanite, and phyllosillicate minerals (e.g. chlorite, biotite and muscovite), derived from felsic magmatic sources, exert a significant control on the chemical composition. Scanning electron micrographs of quartz grains indicate an abundance of silt-sized quartz probably resulting from glacial processes active in Pleistocene followed by aeolian transport from the arid to semiarid Central Asian southern desert (Turkmenistan, Tajikistan and Uzbekistan great deserts). Seemingly, local topography of northeast Iran, acted as a major barrier, entrapping the airborne dusts.

Keywords


[1] Gallet S., Jahn B., Torii M., “Geochemical characterization of the Luochuan loess-paleosol sequence, China, and paleoclimatic implications“, Chemical Geology 133 (1996) 67–88.

[2] Jahn B., Gallet S., Han J., “Geochemistry of the Xining, Xifeng and Jixian sections, Loess Plateau of China: aeolian dust provenance and paleosol evolution during the last 140 ka“, Chemical Geology 178 (2001) 71–94.

[3] Pecsi M., “Loess is not just the accumulation of dust“, Quaternary International 7/8 (1991) 1–21.

]4[ خواجه م.، "بررسی رسوب‌شناسی، محیط رسوبی و رسوب‌زایی نهشته‌های کواترنر حوضه گرگانرود"، رساله دکتری زمین شناسی، دانشگاه آزاد اسلامی، واحد علوم و تحقیقات (1381) 250 ص.

]5[ امینی آ.، "مطالعه برخاستگاه و مکانیزم رسوب زائی لس‌ها در حوضه آبخیز قره تیکان"، رساله کارشناسی ارشد، دانشگاه تهران، (1374) 164ص.

]6[ پاشایی ع.، "ترکیب کانی های رسی در مواد لسی و تغییرات آن نسبت به شرایط محیط در استان گلستان"، مجله علوم زمین، شماره 60 (1376) 48-55.

[7] Kehl M., Frechen M., Skowronek A., “Paleosols derived from loess and loess-like sediments in the basin of Perspolis, Southern Iran”, Quaternary International 140/141 (2005) 135-149.

[8] Okhravi R., Amini A., “Characteristics and provenance of the loess deposits of the Gharatikan watershed in Northeast Iran”, Global and Planetary Change 28 (2001) 11–22.

]9[ رقیمی م.، خواجه م.، شمعانیان غ.، "مطالعه کانی شناسی نهشته های لسی، استان گلستان"، چهاردهمین کنفرانس انجمن بلورشناسی و کانی شناسی ایران (1385) ص 415-417.

]10[ آقا نباتی ع.، "زمین شناسی ایران"، انتشارات سازمان زمین شناسی و اکتشافات معدنی کشور (1383) 586 ص.

]11[ درویش زاده ع.، "زمین شناسی ایران"، نشر دانش امروز، وابسته به انتشارات امیر کبیر، چاپ دوم (1380) 901 ص.

[12] Lateef A.S.A., “Distribution, provenance, age and paleoclimatic record of the loess in Central North Iran”, Eden, D.N., Furkert, R.J. (Eds.), Loess–Its Distribution, Geology and Soils, Proceeding sofa International Symposium on Loess, New Zealand, Balkema, Rotterdam, 14–21 February (1988) 93–101.

[13] Rozycki S.Z., “Loess and Loess-Like Deposits“, The Publishing House of the Polish Academy of sciences. Wroclaw, (1991) 76-107.

]14[ قرقره چی ش.، خرمالی ف.، "مطالعه اثر تراز آب زیر زمینی و نوع کاربری بر منشاء و توزیع کانی های رسی در خاکهای لسی جنوب غرب استان گلستان"، مجله علوم کشاورزی و منابع طبیعی جلد 15، شماره 3 (1387) ص 1-14.

[15] Iriondo M.H., Kröhling D.M., “Non-classical types of loess”, Sedimentary Geology 202 (2007) 352–368.

[16] Flugel E., “Microfacies Analysis of Limestone”, Springer-Verlag, Berlin-Heidelberg- New York (1982) p.633.

[17] Romer R. L., Nowaczyk N., Wirth R., “Secondary Fe-Mn-oxides in minerals heavily damaged by α–recoil: possible implications for paleomagnetism“, International Journal Earth Science 96 (2007) 375-387.

[18] Bariss N., “Loess in Form 2”, Geographical Research Institute, Hungarian Academy of Science (1993) p. 82.

[19] Becze-Deak J., Langhor R., Verrechia E. P., “Small scale secondary CaCO3 accumulations in selected sections of the European loess belt”, Geoderma 76 (1997) 221-252.

[20] Abtahi A., “Soil genesis as affected by topography and time in calcareous parent materials”, Soil Science Society of America 44 (1980) 329-336.

[21] McLennan S.M., “Relationships between the trace element composition of sedimentary rocks and upper continental crust”, Geochemistry Geophysics Geosystems 2 (2001) 1–29.

[22] Broska I., Williams C.T., Uher P., Konecny P., Leichmann J., “The geochemistry of phosphorus in different granite suites of the Western Carpathians, Slovakia: the role of apatite and P-bearing feldspar”, Chemical Geology 205 (2002) 1–15.

[23] Taylor S.R., McLennan S.M., “The Continental Crust: its Composition and Evolution”, Blackwell Scientific Publications Ltd., (1985) p. 312.

[24] Adamova M., “Geochemistry of flysch sediments and its application in geological interpretations”, Geologica Carpathica 42 (1991) 147–156.

[25] Von Eynatten H., “Petrography and chemistry of sandstones from the Swiss Molasse Basin: an archive of the Oligocene and Miocene evolution of the Central Alps”, Sedimentology 50 (2003) 703–724.

[26] Nesbitt H.W., Fedo C.M., Young G.M., “Quartz and feldspar stability, steady and nonsteady-state weathering, and petrogenesis of siliciclastic sands and muds”, Journal of Geology 105 (1997) 173–191.

[27] Nesbitt H.W., Young G.M., “Formation and diagenesis of weathering profiles”, Journal of Geology 97 (1989) 129–147.

[28] Chamly H., “Clay Sedimentology”, Springer Verlag (1989) p. 3-72.

[29] Pye K., “Aeolian Dust and Dust Deposit”, Academic Press, London (1987) p. 334.

[30] Ujvari G., Varga A., Balogh-Brunstad Z., “Origin, weathering, and geochemical composition of loess in southwestern Hungary”, Quaternary Research 69 (2008) 421–437.

[31] Mazzullo J., Ritter C., “Influence of sediment source on the shape and surface textures of glacial quartz and sand grains”, Geology 19 (1991) 384–385.

[32] Whalley W.B., Krinsley D.H., “A scanning electron microscopy study of surface textures of quartz grains from glacial environments”, Sedimentology 21 (1974) 87–105.

[33] Faure C., “Principles and Application of Inorganic Geochemistry”, Macmillan (1992) p. 626.