Hydrothermal fluid evolution based on mineralogic and fluid inclusion studies on iron ores from Qatruyeh area, Fars province

Abstract

The Qatruyeh iron occurrences are located in the eastern edge of the Sanandaj-Sirjan metamorphic zone, southwestern Iran (at 50 Km northeastern of Neyriz), and are hosted by a Late Proterozoic to Early Paleozoic sequence which is dominated by metamorphosed carbonate rocks. The Iron ores occur as layered, massive and disseminated magnetite and in lesser amount as hematite-bearing veins and veinlets. Mineralogical studies on host rock and iron ores indicate that magnetite mineralization was occurred in relation to pervasive Na-Ca alteration. The stage is shown by spread metasomatic replacement textures, gradational contact between magnetite ore and host rock and mineral assemblages of magnetite + actinolite + quartz + titanite + dravite + paragonite + siderite ± tremolite ± pyrite ± chalcopyrite. Fluid inclusion data on quartz minerals accompanied by ores indicate that metamorphic-hydrothermal fluids caused magnetite mineralization at temperatures between 285 and 345 oC with salinities between 3.5 and 15 weight percent NaCl equivalent at pressures below 280 bars, at greenschist to amphibolite metamorphic conditions. The brittle and ductile deformation regimes result in remobilization of metamorphic fluids and iron ore precipitation along the wide ductile shear zones, lithological boundaries and superficial fractures.  Physicochemical changes by interaction of fluids with carbonates can be effective mechanisms of iron ore precipitation due to cooling and condensation, effervescence, increasing of pH and pCO2, break the ligands and decreasing of H2O dielectric constant.

Keywords


[1] Giles A. D., Marshall B., “Genetic significance of fluid inclusions in the CSA Cu-Pb-Zn deposit, Cobar, Australia”, Ore geology Review 24 (2004) 241-266.

[2] Kontak D. J., Kerrich R., “ An isotopic (C, O, Sr) study of vein gold deposits in the Meguma Terrone Nova Scotia: Implication for source reserviors”, Economic Geology 92 (1997) 161-180.

[3] Alavi M., “Structures of the Zagros Fold-Thrust belt in Iran”, American Journal of Science 13 (2007) 1064–1095.

]4[ لیاقت س.، زراسوندی ع.، اردبیلی ا.، "گزارش نهایی طرح پی جویی مواد معدنی در شهرستان نیریز"، مجری طرح: بخش علوم زمین دانشگاه شیراز و وزارت صنایع و معادن (استان فارس)، محل نگهداری: اسناد سازمان زمین‌شناسی و اکتشافات معدنی کشور (1379).

[5] Sheikholeslami M.R., “Evolution structurale et metamorphique de la marge sud de la microplaque de l’Iran central: les complexes metamorphiques de la region de Neyriz (Zone de Sanandaj-Sirjan).", These, universite de Brest, Ph.D thesis (2002) 194.p.

[6] Sarkarinejad Kh., Faghih A., Grasemann B., “Transpressional deformations within the Sanandaj–Sirjan metamorphic belt (Zagros Mountains, Iran)”, Journal of Structural Geology 30 (2008) 818-826.

[7] Guilbert J.M., Park C.F., “The Geology of Ore Deposits”, WH Freeman & Company, United States of America (1997) 985 p.

[8] Williams P.J., Barton M., Johnson D., Fontbote L., De Haller A., Mark G., Oliver N., Marschik R., “Iron Oxide Copper-Gold Deposits: Geology, Space-Time Distribution, and Possible Modes of Origin”, Economic Geology 100 (2005) 371–405.

[9] Hitzman M.W., Oreskes N., Einaudi M.T., “Geological Characteristics and tectonic setting of Protrozoic Iran oxide (Cu-U-Au-REE)”, Precambrian Research 58 (1992) 241-287.

[10] Rusinov V.L., Rusinova O.V., Kryazhev S.G., Shchegol'Kov Yu.V., Alysheva E.I., Borisovsky S.E., “Wall- Rock metasomatism of carbonaceous Terrigenous rocks in the Lena Gold district”, Geology of Ore Deposits 50 (2008) 1-40.

[11] Audetat, A., Guenther, D., and Heinrich, C.A., “Formation of a magmatic-hydrothermal ore deposit; insights with LA-ICP-MS analysis of fluid inclusions”, Science 279 (1998) 2091–2094.

[12] Lottermoser B.G., “Rare earth elements and



hydrothermal ore formation processes”, Ore Geology Reviews 7 (1992) 25-41.

[13] Chao E.C.T., Back J.M., Minkin J.A., Rum Yingchen., “Host-rock controlled epigenetic, hydrothermal metasomatic origin of the Bayan Obo REE-Fe-Nb ore deposit, Inner Mongolia, P.R.C”, Applied Geochemistry 7 (1992) 443-458.

[14] Chao E.C.T., Back J.M., Minkin J.A., Tatsumoto M., Wang Junwen, Conrad J.E., McKee E.H., Hou Zonglin, Meng Qingrun, Huang Shengguang., “The sedimentary carbonate-hosted giant Bayan Obo REE-Fe-Nb ore deposit of Inner Mongolia, China: A cornerstone example for giant polymetallic ore deposits of hydrothermal origin”, U.S. Geological Survey Bulletin (1997) 65 p.

[15] Hemley J.J., Hunt J.P., “Hydrothermal ore-forming processes in the light of studies in rock-buffered systems: II Some general geologic applications”, Economic Geology 87 (1992) 23–43.

[16] Hitzman M.W., “Iron oxide - Cu - Au deposits, what, where, when and why?. in Porter TM, Hydrothermal Iran oxide copper-gold and related deposits: A Global Perspective”, Australian Mineral Foundation 1 (2000) 9 – 25.

[17] Wilkinson J. J., “Fluid inclusions in hydrothermal ore deposits”, Lithos 55 (2001) 229-272.

[18] Hall D. L., Sterner S. M., Bodnar, R. J., “Freezing point depression of NaCl–KCl-H2O solutions”, Economic Geology 93 (1988) 97-202.

[19] Fan H. R., Groves D. I., Mikucki E. J., Mc Naughton N.J., “Contrasting fluid types at the Nevoria gold deposit in the Southern Cross greenstone belt, Western Australia, Implications of auriferous fluids depositing ores within and Archean banded iron formation”, Economic Geology 95 (2000) 1527-1536.

[20] Derome D., Cathelineau M., Cuney M., Fabre C., Dubessy J., Bruneton P., “Fluid regime in the Kombolgie sandstones in the vicinity of unconformity type uranium deposits (Northern Territory, Australia)”, in XVI ECROFI European current research on fluid inclusion 37 ( 2001) 378–392.

[21] Robb L., “Introduction to ore forming processes”, Blackwell publishing British Library (2005) 370p.

[22] Roedder E., “Fluid inclusions (Reviews in mineralogy)”, Mineralogical Society of America, Michigan (1984) 644 p.

[23] Zhang Y.G., Frantz J.D., “Determination of the homogenization temperatures and densities of supercritical fluids in the system NaCl–KCl–CaCl2–H2O using synthetic fluid inclusions”, Chemical Geology 64 (1987) 335–350.









[24] Seward T. M., Barnes H. L., “Metal transport by hydrothermal ore fluids”, Geochemistry of Hydrothermal Ore Deposits (third ed.), Wiley (1997) 435–486.

[25] Kesler E. S., “Ore-Forming Fluids”, Elements 1 (2005) 13-18.

[26] Hezarkhani A., Williams-Jones A. E., Gammons C. H., “Factors controlling copper solubility and chalcopyrite deposition in the Sungun porphyry copper deposit, Iran”, Mineralium Deposita 34 (1999) 770-783.

[27] Cox D.P., Singer D.A., “Distribution of gold in porphyry copper deposits”, U.S.Geological Survey Bulletin 1877 (1988) 1-14.