[1] رادفر ج.، "نقشه 1:100000 اردستان"، سازمان زمین شناسی و اکتشافات معدنی کشور (1378).
[2] Amidi S. M., "Contribution á l’étude stratigraphique, petrologique et petrographique des roches magmatiques de la region Natanz-Nain-Surk (Iran central)", Thèse Ph.D., Univ. Grénoble, France (1975) 316pp.
[3] Amidi S. M., "Étude géologique de la région de Natanz-Surk (Iran Central), stratigraphie et pétrologie", Geology Survey of Iran 42 (1977) 316 p.
[4] Pourhosseini F., "Petrogenesis of Iranian plutons: a study of the Natanz and Bazman intrusive complexes", PhD thesis, University of Cambridge(1981) 315p.
[5] Yoder H. S. Jr., Tilley C. E., "Origin of basalt magmas: an experimental study of natural and synthetic rock systems", Journal of Petrology 3 (1962) 342-532.
[6] Abu Anbar M. M., "Petrogenesis of the Nesryin gabbroic intrusion in SW Sinai, Egypt: new contributions from mineralogy, geochemistry, Nd and Sr isotopes", Mineralolgy and Petrology 95 (2009) 87–103.
[7] Russell J. K., Nicholls J., "Analysis of petrologic hypotheses with Pearce element ratios", Contributions to Mineralogy and Petrology 99 (1988) 25–35
[8] Arth J.G., "Behaviour of trace elements during magmatic processes—a summary of theoretical models and their applications", Journal of research of the U.S. Geological Survey 4 (1976) 41–47.
[9] Farrrow C. E., Barr S. M., "Petrology of high Al-hornblende and magmatic epidote bearing plutons in the south-eastern Cape Breton highlands, Nova Scotia", The Canadian Mineralogist 30 (1992) 377–392
[10] Cox K. G., Bell J. D., Pankhurst R. J., " The interpretation of igneous rocks", Allen & :union:. London (1979).
[11] Pearce J. A., "A user’s guide to basalt discrimination diagrams. In: Wyman, D. A. (ed.) Trace Element Geochemistry of Volcanic Rocks: Applications for Massive Sulphide Exploration", Geological Association of Canada, Short Course Notes 12 (1996) 79–113.
[12] Rollinson H., "Using geochemical data: evolution, presentation, interpretation", Longman Scientific & Technical, UK (1993) 344 p.
[13] Ross P., Bédard J. H., "Magmatic affinity of modern and ancient subalkaline volcanic rocks determined from trace-element discriminant diagrams", Canadian Journal of Earth Sciences 46 (2009) 823-839.
[14] Pearce J. A., "Trace element characteristics of lavas from destructive plate boundaries. In: Thorpe RS (ed) andesites: orogenic andesites and related rockes", Wiley, New York (1982) 525-548.
[15] Schoonmaker A., Kidd W. S. F., "Evidence for a ridge subduction event in the Ordovician rocks of north-central Maine", Geological Society of America Bulletin 118 (2006) 897–912.
[16] Choe W. H., Lee J. I., Lee M. J., Hur S. D., Jin Y. K., "Origin of E-MORB in a fossil spreading center: the Antarctic-Phoenix Ridge, Drake Passage, Antarctica", Geosciences Journal 11 (2007) 185 − 199.
[17] Temizel I., Arslan M., "Mineral chemistry and petrochemistry of post-collisional Tertiary mafic to felsic cogenetic volcanics in the Ulubey (Ordu) area, Eastern Pontides, NE Turkey", Turkish Journal of Earth Sciences 18(2009) 29–53.
[18] Thirlwall M. F., Smith T. E., Graham A. M., Theodorou N., Hollings P., Davidson J. P., Arculus R. J., "High field strength element anomalies in arc lavas; source or process?", Journal of Petrology 35(1994) 819–838.
[19] Thompson R. N., Morrison M. A., Hendry G. L., Parry S. J., "An assessment of the relative roles of crust and mantle in magma genesis: an elemental approach", Philosophical Transactions of the Royal Society, London A310 (1984) 549–590.
[20] Wilson M., “Igneous Petrogenesis a global tectonic approach”, Chapman and Hall, London (1989) 466 p.
[21] Meschede M., "A method of discriminating between different types of mid-ocean ridge basalts and continental tholeiites with the Nb-Zr-Y diagram", Chemical Geology 56 (1986) 207–218.
[22] Pearce J. A., Cann J. R., "Tectonic setting of basic volcanic rocks determined using trace element analyses", Earth and Planetary science Letters19 (1973) 290-300.
[23] Pearce J. A., Norry M. J., "Petrogenetic implications of Ti, Zr, Y and Nb variations in volcanic rocks", Contributions to Mineralogy and Petrology 69 (1979) 33– 47.
[24] Boynton W. V., "Cosmochemistry of the rare earth elements: meteorite studies: in P. Henderson (ed.), Rare Earth Element Geochemistry, Developments in Geochemistry", 2nd ed., Elsevier Science Publishers, Amsterdam (1983) 63-114 .
[25] Sun S. S., McDonough W. E., "Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. In: Saunders, A.D., Norry, M.J. (Eds.), Magmatism in the Ocean Basins", Geological Society Special Publication London 42 (1989) 313–345.
[26] Hawkesworth C. J., Gallagher K., Hergt J. M., McDermott F., "Mantle and slab contributions in arc magmas", Annual Review of Earth and Planetary Sciences 21(1993)175–204.
[27] Saunders A. D., Norry M. J., Tarney J., "Fluid influence on the trace element compositions of subduction zone magmas. In: Tarney J., Pickering K. T., Knipe R. J., Dewey J. F. (Eds.), The Behaviour and Influence of Fluids in Subduction Zones", The Royal Society, London (1991) 151–166.
[28] Melzer S., Wunder B., "Island-arc basalt alkali ratios: Constraints from phengite-fluid partitioning experiments", Geology 28 (2001) 583-586.
[29] Cruciani G., Franceschelli M., Marchi M., Zucca M., "Geochemistry of metabasites from NE Sardinia, Italy: nature of the protoliths, magmatic trend, and geotectonic setting", Mineralogy and Petrology 74 (2002) 25–47
[30] Capedri S., Venturelli G., Bocchi G., Dostal J., Garuti G., Ross A., "The geochemistry and petrogenesis of an ophiolite sequence from Pindos, Greece", Contributions to Mineralogy and Petrology 74 (1980) 189-200.
[31] Beccaluva L., Di Girolamo P., Macciotta G., Morra V., "Magma affinities and fractionation trends in ophiolites", Ofioliti 8 (1983) 307-324.
[32] Mullen E. D., "MnO-TiO2-P2O5: a minor element discriminant for basaltic rocks of oceanic environments and its implications for petrogenesis", Earth and Planetary Science Letters 62 (1983) 53–62.
[33] Serri G., "The petrochemistry of ophiolitic gabbroic complexes: a key for the classification of ophiolites into low-Ti and high-Ti types", Earth and Planetary Science Letters 52 (1981) 203–212.
[34] Crawford A. J., Falloon T. J., Green, D. H., "Classification, petrogenesis and tectonic setting of boninites. In: Crawford, A.J. (ed.) Boninites and Related Rocks", Unwin Hyman, London (1989) 1-49.
[35] Bloomer S., Hawkins, J. W., "Petrology and geochemistry of boninite series volcanic rocks from the Mariana Trench", Contributions to Mineralogy and Petrology 97 (1987) 361-377.
[36] Meijer A., "Primitive arc volcanism and a boninitic series: examples from Western Pacific island arcs. In Hayes, D. E. (Ed.), The tectonic and geologic evolution of Southeast Asian Seas and Islands", AGU Geophysical Monograph 23(1980) Washington (American Geophysical :union:), 269-282.
[37] Beccaluva L., Serri G., "Boninitic and low-Ti subduction related lavas from intraoceanic arc–backarc systems and low-Ti ophiolites: a reappraisal of their petrogenesis and original tectonic setting", Tectonophysics 146 (1988) 291– 315.
[38] Pinto-Linares P. J., Levresse G., Tritlla J., Valencia V. A., Torres-Aguilera J. M., Gonzlez M., Estrada D., "Transitional adakite-like to calc-alkaline magmas in a continental extensional setting at La Paz Au-Cu skarn deposits, Mesa Central, Mexico: metallogenic implications", Revista Mexicana de Ciencias Geolَgicas 25 (2008) 39-58.
[39] DePaolo D. J., "Trace element and isotopic effects of combined wall rock assimilation and fractional crystallization", Earth and Planetary Science Letters 53 (1981)189–120.
[40] Kocak K., Isık F., Arslan M., Zedef V., "Petrological and source region characteristics of ophiolitic hornblende gabbros from the Aksaray and Kayseri regions, central Anatolian crystalline complex, Turkey", Journal of Asian Earth Science 25 (2005) 883–891.
[41] Tatsumi Y., Kogiso T., "The subduction factory: its role in the evolution of the Earth’s crust and mantle. In: Larter, R.D., Leat, E.T. (Eds.), Intra-oceanic Subduction Systems: Tectonic and Magmatic Processes", Geological Society London, Special Publication 219 (2003): 55–80.
[42] Davidson J. P., "Crustal contamination versus subduction zone enrichment: examples from the Lesser Antilles and implications for the mantle source composition of island arc volcanic rocks", Geochimica et Cosmochimica Acta 51 (1987) 2185–2198.
[43] Elliot T., Plank T., Zindler A., White W. M., Bourdon B., "Element transport from the slab to volcanic front at the Marina arc", Journal of Geophysical Research 102 (1997), 14991–15019.
[44] Pearce J. A., "Role of the cub-continental lithosphere in magma genesis at active continental margines, In Hawkesworth, C. J. and Norry, M. J. eds., Continental basalts and mantle Xenoliths", Shiva, Nantwich, Cheshire, U.K. (1983)230-250.
[45] Pearce J. A., Peate D. W., "Tectonic implications of the composition of volcanic arc lavas", Annual Review of Earth and Planetary Sciences 23 (1995) 251–285.
[46] John T., Klemd R., Gao J., Garbe-schönberg C. D., "Trace-elements mobilization in slabs due to nonsteady-state fluid-rock interaction: constraints from an eclogite-facies transform vein in blueschist (Tianshan, China)", Lithos 103 (2008) 1– 24.
[47] Woodhead J. D., Eggins S., Gamble J., "High field strength and transition element systematic in island arc and back-arc basin basalts: evidence for a multiphase melts extraction and a depleted mantle wedge", Earth and Planetary Science Letters 114(1993) 491–504.
[48] Grove T. L., Parman S. W., Bowring S. A., Price R. C., Baker M. B., "The role of an H2O-rich fluid component in the generation of primitive basaltic andesites and andesites form the Mt. Shasta region, N. California", Contributions to Mineralogy and Petrology 142 (2002) 375–396.
[49] Thorkeison D. J., Breitsprecher K., "Partial melting of slab window margins: genesis of adakitic and non-adakitic magma", Lithos 79 (2005) 25–42.
[50] Condie K. C., "Geochemistry and tectonic setting of Early Proterozoic supracrustal rocks in the south-western United States", The Journal of Geology 94 (1986) 845–864.
[51] Green N. L., "Influence of slab thermal structure on basalt source regions and melting conditions: REE and HFSE constraints from the Garibaldi volcanic belt, northern Cascadia subduction system", Lithos 87 (2006) 23–49.
[52] Hawkesworth C., Turner S., Peate D., van Calsteren P., "U-Th isotopes in arc magmas: Implications for element transfer from the subducted crust", Science 276 (1997) 551-555.
[53] John T., Scherer E. E., Haase K., Schenk V., "Trace element fractionation during fluid-induced eclogitization in a subducting slab: trace element and Lu-Hf-Sm-Nd isotope systematics", Earth and Planetary Science Letters 227 (2004) 441–456.