Mineralogy of asbestos from the metamorphic complex from north easternTakab-NW Iran

Abstract

The ultramafic rocks from the Takht-e-Soleyman metamorphic complex, in Precambrian age, are classified as serpentinized metaperidotites and serpentinites, based on degree of serpentinization. Serpentine forms more than 90 volume% of the serpentinites. On the basis of serpentine polymorphs, textural relations and micro-structure features, variety of serpentinites are determined as massive serpentinites, serpentinite schists and chrysotile-bearing serpentinites.  Chrysotile in serpentinites has been formed due to static condition and brittle deformations. During static state chrysotile and lizardite after olivine and pyroxene are formed as pseudomorphic mesh and bastite textures in the massive serpentinites. Then serpentinization processes reactivated by formation and development of joints and fractures related to brittle deformations at the local sheared zones. Chrysotile occur as fine grained crystals in the serpentinite matrix and veinlets with mm thickness filling fractures of the chrysotile-bearing serpentinites. Sligtht thickness of chrysotile veinlet in the investigated serpentinites can be attributed to the olivine rich composition of protolite. Low amounts of Cr2O3 in composition of the analyzed chrysotile supports low clinopyroxene and high olivine in protolite of serpentinites. Serpentinite schists are formed under ductile deformation condition at the regional sheared zones. Amphibole asbestos occur as veins having meter scale thickness filling of joints and fractures at the regional sheared zone. Length of thin and long asbestos amphibole arrives up to cm. On the basis of petrography, raman spectroscopy, XRD and microprope analysis, both chrysotile- and amphibole asbestos have been recognized in the Takht-e-Soleyman serpentintes.

Keywords


[1] Chatterjee K. K., “Uses of Industrial Minerals, Rocks and Freshwater”, Nova Science Publishers (2009) 584 p.

[2] Devore G. W., “Preferred mineral distributions of polymineralic rocks related to non-hudrostatic stresses as expressions of mechanical equilibria”, Journal of Geology 77 (1968) 26-38.

[3] Hajialioghli R., Moazzen M., Jahangiri A., Droop G. T. R. Bousquet R. and Oberhänsli R.,

“Petrogenesis of meta-peridotites in the Takab area, NW Iran”, Goldschmidt Conference Abstracts, Cologne, Germany (2007 a) A370.

[4] Hajialioghli R., Moazzen M., Droop G. T. R., Oberhansli R., Bousquet R. Jahangiri A. and Ziemann M., “Serpentine polymorphs and P-T evolution of meta-peridotites and serpentinites in the Takab area, NW Iran”, Mineralogical Magazine 71 (2007 b) 155–174.

[5] Moazzen M. Hajialioghli R. “Zircon SHRIMP dating of mafic migmatites from NW Iran; Reporting the oldest rocks from the Iranian crust”, 5th Annual Meeting AOGS, Busan, Korea. (2008) SE62.

[6] Hajialioghli R., Moazzen M., Droop G., Oberhansli R., Bousquet R., Jahangiri A., “Tectonic implications of the oligocene mafic migmatites in the Takab core complex, NW Iran”, Tectonic Crossroads: Evolving Orogens of Eurasia-Africa-Arabia Ankara, Turkey (2010 a).

[6] Virta R. L., “Asbestos”, U.S. Geological Survey Minerals (2000) 7 p.

]7[ افتخارنژاد، ج.، "طبقه بندی تکتونیکی ایران در ارتباط با حوضه های رسوبگذاری"، مجله انجمن نفت ایران، 82 (1359) 19-28.

[8] Stocklin, J., “Structural history and tectonics of Iran: a review: American Association of

Petroleum”, Geologists Bulletin, 52 (1968) 1229–1258.

[9] Alavi, M., “Tectonics of the Zagros orogenic belt of Iran: New data and interpretations”, Tectonophysics, 229 (1994) 211–238.

[10] Alavi, M., “Regional stratigraphy of the Zagros Fold-Thrust belt of Iran and its proforelenad

Evolution” American Journal of Science, 304 (2004) 1–20.

[11] Berberian, M. and King, G.C.P., "Towards a paleogeography and tectonic evolution of Iran” Canadian Journal of Earth Sciences, 18 (1981) 210–265.

]12[ بابا خانی ع. و قلمقاش ج. "نقشه زمین شناسی 100000/1 تخت سلیمان"، (1371) سازمان زمین شناسی ایران.

]13[ لطفی، م.، "نقشه زمین شناسی 100000/1 ماه نشان" سازمان زمین شناسی ایران، (1380) تهران.

[14] Stockli, D.F., Hassanzadeh, J., Stockli, L.D., Axen, G., Walker, J.D. and Dewane, T.J., “Structural and geochronological evidence for Oligo-Miocene intra-arc low-angle detachment faulting in the Takab-Zanjan area, NW Iran” Abstract, Programs Geological Society of America, 36 (2004) 319.

[15] Moazzen, M., Hajialioghli, R., Moller, A., Droop, G., Oberhansli, R., Altenberger, U., Jahangiri, A., “Oligocene partial melting in the Takab metamorphic complex, NW Iran: Evidence from in situ U-Pb geochronology” Journal of Sciences, Islamic Republic of Iran, 24 (3) (2013) 217-228.

[16] Hajialioghli R., Moazzen M., Jahangiri A., Oberhänsli R., Mocek B. and Altenberger U., “Petrogenesis and tectonic evolution of metaluminous sub-alkaline granitoids from the Takab Complex, NW Iran”, Geological Magazine 148 (2010 b) 250-268.

]17[ حاجی علی اوغلی ر.، "بررسی پترولوژی سنگ‌های دگرگونی کالک-سیلیکات و متابازیک مجموعه تخت سلیمان در شمالشرق تکاب (غرب ایران)"رساله دکتری، (1386) دانشگاه تبریز.

[18] Li X.P., Rahn M., Bucher K., “Metamorphic processes in rodingites of the Zermatt-Saas

Ophiolites” International Geological Review 46 (2004) 28-51.

[19] Hermann J., Muntener O., Scambelluri M., “The importance of serpentinite mylonites for subduction and exhumation of oceanic crust”, Tectonophysics 327 (2000) 225–238.

[20] Wicks F. J., “Deformation histories as recorded by serpentinites, II: Deformation during and after serpentinization”, Canadian Mineralogist 22 (1984) 197–204.

[21] Maltman A. J., “Serpentinite textures in Anglesey, North Wales, United Kingdom”, Geological Society of American Bulltin 89 (1978) 972–980.

[22] Kretz R., “Symbols for rock-forming minerals” American Mineralogist 68 (1983) 277-279.

[23] Leake B. E., Woolley A. R., Arps C. E. S., Birch W. D., Gilbert M. C., Grice J. D., Hawthorne F. C., Kato A., Kisch H. J., Krivovichev V. G., Linthout K., Laird J., Mandarino J. A., Maresh V. W., Nickel E. H., Rock N. M. S., Schumacher J. C., Smith D. C., Stephenson N. N., Ungaretti L., Whittaker E. J. W. and Youzhi G., “Nomenclature of amphiboles: report of the subcommittee on amphiboles of the International Mineralogical Association, Commission on New Minerals and Mineral Names”, American Mineralogist 82 (1997) 1019–1037.

[24] O’Hanley D. S., Wicks F. J., “Conditions of formation of lizardite, chrysotile and antigorite, Cassiar, British Columbia”, Canadian Mineralogist 33 (1995) 753–73.

[25] Evans B., “The serpentine multisystem revisited: Chrysotile is metastable”, International Geology Review 46 (2004) 479-506.

[26] Hirauchi K., “Serpentinite textural evolution related to tectonically controlled solid-state intrusion along the Kurosegawa Belt, northwestern Kanto Mountains, central Japan”, Island Arc 15 (2006) 156–164.