Geology and geochemistry of sub-volcanic and plutonic bodies of Kashmar (North of Lut Block)

Abstract

Kashmar subvolcanic and plutonic bodies have compositional ranges from quartz gabbro to alkali granite. With exception of several small stock with alkaline  Tholeiitic basalts characteristic (minimum amounts of SiO2 and CaO; maximum amount of MgO; high amounts of Na2O and K2O and LOI and high meta-luminous to peraluminous (1.33-2.32)), all rocks have high-k calc-alkaline to shoshonitic, meta-luminous to weak peraluminous (mostly ASI<1.1 and maximum to 1.3) characteristic. Normalized REE patterns show enrichment in LILE (such as Ba,Th, Rb, U and K) and LREEs, depletion of Nb-Ta-Ti (arc-like indicators) and flat HREE patterns with negative Eu anomalies. Thus the rocks are essentially co-magmatic and I-type. On the discrimination diagrams, Granitoids plots in the arc-collision continental domain. K, Rb, Ba, Eu and Sr variations for granitoids show role of partial melting and AFC process in formation of Kashmar granitoids. The flat HREE patterns also indicate no residual or fractionating garnet. Base on Sr, Y, Al2O3, La and Yb, the all Kashmar rocks are no adakite-like and forms from about 50% partioal melting of  amphiboliths.

Keywords


]1[ Roberts M.P., Clemens J.D., "Origin of High-Potassium, Calc-Alkaline", I-Type Granitoids. Geology 21 (1993) 825–828.

]2[ Sisson T.W., Ratajeski K., Hankins W.B., Glazner A.F., "Voluminous granitic magmas from common basaltic sources", Contributions to Mineralogy and Petrology 148 (2005) 635–661.

]3[ Hildreth W., Halliday A.N., Christiansen R.L., "Isotopic and Chemical Evidence Concerning the Genesis and Contamination of Basaltic and Rhyolitic Magma beneath the Yellowstone Plateau Volcanic Field", Journal of Petrology 32 (1991) 63–138.

]4[ Huang C.M., Zhao Z.D., Zhu D.C., Liu D., Huang Y., Dung M.C., Hu Z.C., Zheng J.P., "Geochemistry, zircon U–Pb chronology and Hf isotope of Luozha leucogranite, southern Tibet: Implication for petrogenesis", Acta Petrologica Sinica 29 (2013) 3689–3702.

]5[ Castro A., Fernandez C., El-Hmidi H., El-Biad M., Diaz M., de la Rosa J., Stuart F., "Age constraints to the relationships between magmatism, metamorphism and tectonism in the Aracena metamorphic belt, southern Spain", International Journal of Earth Sciences 88 (1999) 26–37.

]6[ Patino-Douce A.E., "Experimental generation of hybrid silicic melts by reaction of high-Al basalt with metamorphic rocks", Journal of Geophysical Research 100 (1995) 15623–15639.

]7[ Barbarin B., "A review of the relationships between granitoid types", their origins and their geodynamic environments. Lithos 46 (1999) 605–626.

]8[ Kemp A.I.S., Hawkesworth C.J., Collins W.J., Gray C.M., Blevin P.L., Eimf. "Isotopic evidence for rapid continental growth in an extensional accretionary orogen: The Tasmanides", eastern Australia. Earth and Planetary Science Letters 284 (2009) 455–466.

]9[ Jiang X.-Y., Li X.-H., "In situ zircon U–Pb and Hf–O isotopic results for ca. 73Ma granite in Hainan Island: Implications for the termination of an Andean-type active continental margin in southeast China". Journal of Asian Earth Sciences 82 (2014) 32–46.

]10[ Li X.-H., Li Z.-X., Li W.-X., Liu Y., Yuan C., Wei G., Qi C., "U–Pb zircon, geochemical and Sr–Nd–Hf isotopic constraints on age and origin of Jurassic I-and A-type granites from central Guangdong", SE China: a major igneous event in response to foundering of a subducted flat-slab? Lithos 96 (2007) 186–204.

]11[ Shafaii Moghadam H.S., Li X.H., Ling X.X., Santos J.F., Stern R.J., "Eocene Kashmar granitoids (NE Iran): Petrogenetic constraints from U–Pb zircon geochronology and isotope geochemistry", Lithos 216–217 (2015) 118–135.

]12[ Verdel C., Wernicke B.P., Ramezani J., Hassanzadeh J., Renne P.R., Spell T.L., "Geology and thermochronology of Tertiary Cordilleran-style metamorphic core complexes in the Saghand region of central Iran", Geological Society of America Bulletin 119 (2007) 961–977.

]13[ Alaminia Z., Karimpour M.H., Homam S.M., Finger F., "The magmatic record in the Arghash region (northeast Iran) and tectonic implications", International Journal of Earth Sciences 102, 1603–1625.

]14[ Shafaii Moghadam H.S., Corfu F., Chiaradia M., Stern R.J., Ghorbani G., "Sabzevar Ophiolite, NE Iran: Progress from embryonic oceanic lithosphere into magmatic arc constrained by new isotopic and geochemical data", Lithos 210–211 (2014) 224–241.

]15[ Behroozi A., "Geological map of Feyzabad , scale 1:100000, Geological Survey of Iran", Tehran. (1988)

]16[ Bernhardt U., "Middle Tertiary volcanic rocks from the southern Sabzevar zone, Khorasan, NE Iran. Geodynamic Project (Geotraverse) in Iran", Report No. 51: 277-284, Geological Survey of Iran (1983).

]17[ Soltani A., "Geochemistry and geochronology of I–type granitoid rocks in the northeastern Central Iran Plate", PhD Thesis, University of Wollongong, Wollongong, Australia. (2000)

]18[ Golmohammadi A., Mazaheri S. A., Malekzadeh shafaroudi A., Karimpour M. H., "Zircon U-Pb dating and geochemistry of Sarkhar and Bermani granitic rocks, East of Sangan iron mine, Khaf", Iranian Journal of Petrology 17: 83–102.

[19] الماسی ع.، کریم‌پور م.ح.، ابراهیمی‌نصرآبادی خ.، رحیمی ب.، کلوتزلی ا.، سانتوز ژ.ف.، "زمین‌شناسی، کانی‌سازی، سن‌سنجی U-Pb و ژئوشیمی ایزوتوپ‌های Sr-Nd توده‌های نفوذی شمال‌شرق کاشمر"، مجله زمین‌شناسی اقتصادی، جلد 7، شماره 1، (1394) ص 90-69.

]20[ Ishihara S., "The magnetite-series and ilmenite-series granitic Rocks", Mining Geology 27 (1981) 293-305.

]21[ Ishihara S., "The granitoid series and mineralization", Economic Geology 75 (1996) 458-484.

]22[ ISHIHARA S., HASHIMOTO M., MACHIDA M., "Magnetite/Ilmenite–series Classification and Magnetic Susceptibility of the Mesozoic-Cenozoic Batholiths in Peru", Resource Geology 50, Issue 2, pages 123–129.

]23[Middlemost EAK., "Naming materials in the magma/igneous rock system", Earth-Sci Rev 37 (1985) 215–224

]24[ Irvine T. N., Baragar W. R. A., "A guide to chemical classification of the common volcanic rocks", Journal of Sciences 8 (1971) 523-548.

]25[ Peccerillo A, Taylor SR., "Geochemistry of Eocene calc-alkaline volcanic rocks from the Kastamonu area, northern Turkey", Contrib Miner Petrol 58 (1976) 63–81.

]26[ Shand S. J., "Eruptive rocks", London 488 (1943) 231-252.

]27[ Frost B. R., Frost C. D., "A geochemical classification for feldspathic igneous rocks", Journal of Petrology 49(2008)1955–1969.

]28[ Frost B. R., Arculus R. J., Barnes C. G., Collins W. J., Ellis D. J., Frost C.D., "A geochemical classification of granitic rocks", Journal of Petrology 42(2001) 2033–2048.

]29[ Pearce J. A., Haris N. B. W., Tindle A. G., "Trace element discrimination diagrams for the tectonic interpretation of granitic rocks", Journal of Petrology 11(1984) 77-96.

]30[ Whalen J.B., Currie K.L., Chappell B.W., "A-type granites: geochemical characteristics, discrimination and petrogenesis", Mineralogy and Petrology 96(1987) 407–419.

]31[ Sun S. S., Mc Donough W. F., "Chemical and isotopic systematics of oceanic basalts; implications for mantle composition and processes". In: Magmatism in the ocean basins (Eds. Saunders, A. D. and Norry, M. J.) Special Publications 42(1989)313-345. Geological Society, London.

]32[ Boynton W. V., "Cosmochemistry of the rare earth elements", Meteorite studies. In: Rare earth element geochemistry (Ed. Henderson, P.) 115-1522. (1985) Elsevier, Amsterdam.

]33[ Taylor S. R., McLenan S. M., "The continental crust, its composition and evolution, an examination of the geochemical record preserved in sedimentary rocks", Blackwell. Oxford 46(1985)312-333.

]34[ Wilson M., "Igneous petrogenesis", Uniwin Hyman, London. (1989).

]35[ Martin H., "The adakitic magmas: modern analogues of Archaean granitoids", Lithos 46 (3): (1999) 411-429.

]36[ Pearce J. A., Parkinson I.J., "Trace element models for mantle melting: application to volcanic arc petrogenesis. In: Prichard, H.M., Albaster, T., Harris, N.B.W., Neary, C.R. (Eds.), Magmatic Processes in Plate Tectonics", Geological Society of London 76 (1993) 373–403.

]37[ Reagan M. K., Gill J. B., "Coexisting calc-alkaline and high niobium basalts from Turrialba volcano, Costa Rica: implication for residual titanates in arc magma source", Journal of Geophysical Research 94(1989)4619–4633.

]38[ Martin H., "The Achaean grey gneisses and the genesis of the continental crust", Elsevier 86: (1995) 205-25.

]39[ Hildreth W., "Gradients in Silicic Magma Chambers — Implications for Lithospheric Magmatism", Journal of Geophysical Research 86 (1981) 153–192.

]40[ Castro A., Gerya T.V., "Magmatic implications ofmantle wedge plumes", Experimental study. Lithos 103 (2008) 138–148.

]41[ Castro A., Gerya T., Garcia-Casco A., Fernandez C., Diaz-Alvarado J., Moreno-Ventas I., Low I., "Melting Relations of MORB-Sediment Melanges in Underplated Mantle Wedge Plumes; Implications for the Origin of Cordilleran-type Batholiths", Journal of Petrology 51(2010)1267–1295.

]42[ Altherr R., Henjes-Kunst F., Langer C., Otto J., "Interaction between crustal-derived felsic and mantle-derived mafic magmas in the Oberkirch Pluton (European Variscides, Schwarzwald, Germany)", Contributions to Mineralogy and Petrology 137 (1999) 304–322.

]43[ Altherr R., Holl A., Hegner E., Langer C., Kreuzer H., "High-potassium, calc-alkaline I-type plutonism in the European Variscides: northern Vosges (France) and northern Schwarzwald (Germany)", Lithos 50(2000)51–73.

]44[ Galan G., Pin C., Duthou J.L., "Sr–Nd isotopic record of multi-stage interactions between mantle-derived magmas and crustal components in a collision context — The ultramafic–granitoid association from Vivero (Hercynian belt", NW Spain). Chemical Geology 131 (1996) 67–91.

]45[ Kemp A.I.S., Whitehouse M.J., Hawkesworth C.J., Alarcon M.K., "A zircon U–Pb study of metaluminous (I-type) granites of the Lachlan Fold Belt, southeastern Australia: implications for the high/low temperature classification andmagma differentiation processes", Contributions to Mineralogy and Petrology 150 (2005a) 230–249.

]46[ Kemp A.I.S., Wormald R.J., Whitehouse M.J., Price R.C., "Hf isotopes in zircon reveal contrasting sources and crystallization histories for alkaline to peralkaline granites of Temora, southeastern Australia", Geology 33 (2005b) 797–800.

]47[ Topuz G., Altherr R., Siebel W., Schwarz W.H., Zack T., Hasozbek A., Barth M., Satir M., Sen C., "Carboniferous high-potassium I-type granitoid magmatism in the Eastern Pontides: The Gumushane pluton (NE Turkey)". Lithos 116 (2010) 92–110.

]48[ Eby G. N., "Chemical subdivision of the A-type granitoids: petrogenetic and tectonic implications", Geology 20(1992)641–644.

]49[ Xu C., Huang Z., Qi L., Fu P., Liu C., Li E., Gung T., "Geochemistry of Cretaceous granites from Mianning in the Panix region, Sichuan Province, southwestern China: implications for their generation", Journal of Asian Earth Sciences 29(2007) 737–750.

]50[ Altunkaynak S., "Collision-driven slab breakoff magmatism in northwestern Anatolia, Turkey", Journal of Geology 115(2007) 63–82.

]51[ Altunkaynak S., Sunal G., Aldanmaz E., Genc C.S., Dilek Y., Furnes H., Foland K.A., Yang J.S., Yildiz M., "Eocene Granitic Magmatism in NW Anatolia (Turkey) revisited: New implications from comparative zircon SHRIMP U–Pb and 40Ar–39Ar geochronology and isotope geochemistry on magma genesis and emplacement", Lithos 155 (2012) 289–309.

]52[ Dilek Y., Altunkaynak S., Oner Z., "Syn-extensional granitoids in the Menderes core complex and the Late Cenozoic extensional tectonics of the Aegean province", Geological Society, London, Special Publications 321 (2009) 197–223.

]53[ Berberian M., King G.C.P., "Towards a Paleogeography and Tectonic Evolution of Iran", Canadian Journal of Earth Sciences 18(1981)210–265.

]54[ Moghadam H.S., Stern R.J., "Geodynamic evolution of Upper Cretaceous Zagros ophiolites: formation of oceanic lithosphere above a nascent subduction zone", Geological Magazine 148 (2011) 762–801.

]55[ Chiu H.-Y., Chung S.-L., Zarrinkoub M.H., Mohammadi S.S., Khatib M.M., Iizuka Y., "Zircon U–Pb age constraints from Iran on the magmatic evolution related to Neotethyan subduction and Zagros orogeny", Lithos 162–163 (2013) 70–87.

]56[ Verdel C., Wernicke B.P., Hassanzadeh J., Guest B., "A Paleogene extensional arc flare-up in Iran", Tectonics 30. (2011).

]57[ Ramezani J., Tucker R.D., "The Saghand Region, Central Iran: U–Pb geochronology, petrogenesis and implications for Gondwana Tectonics", American Journal of Science 303(2003) 622–665.

]58[ Kargaranbafghi F., Neubauer F., Genser J., Faghih A., Kusky T., "Mesozoic to Eocene ductile deformation of western Central Iran: From Cimmerian collisional orogeny to Eocene exhumation", Tectonophysics 564(2012)83–100.

]59[ Shabanian E., Acocella V., Gioncada A., Ghasemi H., Bellier O., "Structural control on volcanism in intraplate post collisional settings: Late Cenozoic to Quaternary examples of Iran and Eastern Turkey", Tectonics 31. (2012)

]60[ Agard P., Omrani J., Jolivet L., Whitechurch H., Vrielynck B., Spakman W., Monie P., Meyer B., Wortel R., "Zagros orogeny: a subduction-dominated process", Geological Magazine 148(2011) 692–725.

]61[ Rossetti F., Nasrabady M., Theye T., Gerdes A., Monie P., Lucci F., Vignaroli G., "Adakite differentiation and emplacement in a subduction channel: The late Paleocene Sabzevarmagmatism (NE Iran)", Geological Society of America Bulletin 126(2014)317–343.