Mineralogy and distinguishing protolith of gneisses from northern part of Zayandeh-Rud dam lake in North Shahrekord (Sanandaj-Sirjan zone)

Abstract

Gneisses of the northern part of the Zayandehrood Dam Lake, structurally, are located in the Sanandaj-Sirjan zone. The gneises with phengitic marble and metabasic bodies comprise a part of high-pressure units in the North Shahrekord metamorphic complex. Minerlogically, the rocks consist of quartz, garnet, phengite, k-feldspar, albite, tourmaline and rutile with zircon grains. Field (alternation of associated rocks), mineralogical and geochemical evidences are used for determining protolith of the gneisses as igneous source (ortho) or as sedimentary source (para). The geochemical evidences are used such as P < sub>2O5/TiO2 vs. MgO/CaO digram, and Niggli values c against al-alk, ti and al-alk, the frequency of Cr and Ni. In addition to, the mineral assemblages indicate a sedimentary protolith (para gneiss). The chemical composition of the protolith is caused by the felsic igneous resources of evolved crust which are plotted in the range of the Late Archean until post Archean in the diagram Ni against Cr. Our findings, especially geochemical evidences, show that the paragneises have sedimentary source, in contrast to what was previously suggested that they are orthogneiss. The protolith of the paragneisses have been formed in an active continental margin or the back-arc basin.

Keywords


[1] داودیان دهکردی ع. ر.، "تحول تکتونو متامورفیسم و ماگماتیسم در ناحیه شهرکرد – داران (زون سنندج – سیرجان) "، پایان‌نامه دکتری، دانشگاه اصفهان، (1384) 218 صفحه.

[2] Davoudian, A.R., Genser, J., Neubauer, F., Shabanian, N., "40Ar/39Ar mineral ages of eclogites from North Shahrekord in the Sanandaj-Sirjan zone, Iran: Implications for the tectonic evolution of Zagros orogeny", (2016) Gondwana Research, doi: 10.1016/j.gr.2016.05.013.

[3] Nutman A. P., Mohajjel M., Bennett V. C., Fergusson C. L., "Gondwanan Eoarchean Neoproterozoic ancient crustal material in Iran and Turkey: zircon U–Pb–Hf isotopic evidence1", Canadian Journal of Earth Science 51(2014) 272–285.

[4] Leake B. E., "The chemical distinction between ortho-and para-amphibolites", Journal of Petrology 5 (1964) 238-254.

[5] Paschier C. W., Myers J. S., Kroner A., "Field geology of high grade gneiss terrains", Springer Verlag (1990) 151p.

[6] Paul A., Hatzfeld D., Kaviani A., Tatar M., Péquegnat C., "Seismic imaging of the lithospheric structure of the Zagros mountain belt (Iran)", Geological Society, London, Special Publications 330 (2010) 5-18.

[7] Grew E. S., "A review of Antarctic granulite-facies rocks", Tectonophysics 105 (1984) 177-191.

[8] Schreyer W., "Metamorphism of crustal rocks at mantle depths-high-pressure minerals and mineral assemblages in metapelites", Fortschritte der Mineralogie 63 (1985) 227-261.

[9] Mohajjel M., Fergusson C. L., Sahandi M. R., "Cretaceous–Tertiary convergence and continental collision, Sanandaj–Sirjan Zone, western Iran", Journal of Asian Earth Sciences 21 (2003) 397–412.

[10] Hassanzadeh J., Stockli D. F., Horton B. K., Axen G. J., Stockli L. D., Grove M., Schmitt A. K., Walker J. D., "U-Pb zircon geochronology of late Neoproterozoic-Early Cambrian granitoids in Iran: Implications for paleogeography, magmatism, and exhumation history of Iranian basement", Tectonophysics 451 (2008) 71–96.

[11] Badr M. J., Collins A. S., Masoudi F., "The U-Pb age, geochemistry and tectonic significance of granitoids in the Soursat Complex, Northwest Iran", Turkish Journal of Earth Sciences 22 (2013) 1-31.

[12] Mohajjel M., Fergusson C. L., "Dextral transpression in Late Cretaceous continental collision, Sanandaj–Sirjan Zone, Western Iran", Journal of Structural Geology 22 (2000) 1125-1139.

[13] Shakerardakani F., Neubauer F., Masoudi F., Mehrabi B., Liu X., Dong Y., Mohajjel M., Monfaredi B., Friedl G., "Panafrican basement and Mesozoic gabbro in the Zagros orogenic belt in the Dorud–Azna region (NW Iran): Laser-ablation ICP–MS zircon ages and geochemistry", Tectonophysics 647 (2015) 146-171.

[14] Davoudian A. R., Genser J., Dachs E., Shabanian N., "Petrology of eclogites from north of Shahrekord, Sanandaj-Sirjan Zone, Iran", Mineralogy and Petrology 92 (2008) 393-413.

[15] زاهدی م.، "نقشه زمین‌شناسی چهارگوش شهرکرد"، مقیاس 1:250000، سازمان زمین‌شناسی کشور، (1371).

[16] قاسمی ع.، حاج حسینی ا .، حسینی م.، "نقشه زمین شناسی 1:100000 ورقه چادگان"، سازمان زمین شناسی و اکتشافات معدنی کشور (1385).

[17] شبانیان بروجنی ن.، "تحلیلی پترولوژیکی بر سنگ‌های دگرگونی شمال دریاچه زاینده‌رود با نگرشی ویژه به پلی‌متامورفیسم"، پایان‌نامه کارشناسی ارشد، دانشگاه اصفهان، (1377) 258 صفحه.

[18] Passchier C. W., Trouw R. A. J., "Microtectonics", Springer-Verlag, Berlin, Heidelberg (2005) 289 p.

[19] Taylor S. R., McLennan S., "The Continental Crust: Its Composition and Evolution", Blackwell, Oxford (1985) 312 p.

[20] Tarney J., Weaver B. L., "Geochemistry of the Scourian complex: petrogenesis and tectonic models: In: Park RG, Tarney J (eds) Evolution of the Lewisian and comparable Precambrian high grade terrains", Geol Soc Spec Pub 127 (1987) 45-56.

[21] Werner C. D., "Saxonian granulites - igneous or lithogenous: A contribution to the geochemical diagnosis of the original rocks in high-metamorphic complexes. In: Gerstenberger H (ed) Contributions to the geology of the Saxonian granulite massif (Sachsisches Granulitgebirge)", Zfl-Mitteilungen Nr 133 (1987) 221-250.

[22] Burri C., "Petrochemische Berechnungsmethoden auf aquivalenter Grundlage", Birkenhauser, Basel (1959) 334 p.

[23] Lange J., "Geochemische Untersuchungen an Sedimenten des Persischen Golfes", Contrib. Mineral. Petrol 28 (1970) 288-395.

[24] Senior A., Leake B. E., "Regionalm etasomatisma nd the geochemistry of the Dalradian metasedimentso f Connemara, western Ireland", Journal of Petrol 19 (1978) 585-625.

[25] Bjdrlykke K., "Petrology of Ordovician sediments from Wales", Norsk geol, Tidsskr 51 (1971) 123-139.

[26] Leak B. E., "Some metasomaticc alc-magnesians ilicate rocks from Connemara, western lreland: mineralogical control of rock composition", Journal of American Mineralogist 65 (1980) 26-36.

[27] Leak B. E., "The discrimination of ortho and para charnockitic rocks, anorthosites and amphibolites", Indian Minerals 10 (1969) 89-104.

[28] Evans B. W., Leake B. E., "The composition and origin of the striped amphibolites of Connemara, Ireland", Journal of Petrol 1 (1960) 337-63.

[29] Nagarajan R., Madhavaraju j., Nagendra R., Armstrong-Altrin j. S., Moutte j., "Geochemistry of Neoproterozoic shales of the Rabanpalli Formation, Bhima Basin, Northern Karnataka, southern India: implications for provenance and paleoredox conditions", Revista Mexicana de Ciencias Geologicas 24 (2007) 150-160.

[30] Shaw D. M., "The origin of the Apsley gneiss, Ontario", Canadian Journal of Earth Sciences 9 (1972) 18-35.

[31] Cingolani C. A., Manassero M., Abre P., "Composition, provenance, and tectonic setting of Ordovician siliciclastic rocks in the San Rafael block: Southern extension of the Precordillera crustal fragment, Argentina", Journal of South American Earth Sciences 16 (2003) 91–106.

[32] McLennan S. M., Hemming S., McDaniel D. K., Hanson G. N., "Geochemical approaches to sedimentation, provenance, and tectonics. Processes Controlling the Composition of clastic sediments", GSA Special 284 (1993) 21–40.

[33] Cai G., Guo F., Liu X., Sui S., "Elemental and Sr–Nd isotopic compositions of Cenozoic sedimentary rocks from the Dongying Sag of Jiyang depression, North China: Implications for provenance evolution", Geochemical Journal 45 (2011) 33–55.

[34] Floyd P. A., Leveridge B. E., "Tectonic environment of the Devonian Gramscatho basin, south Cornwall: framework mode and geochemical evidence from turbiditic sandstones", Journal of the Geological Society London 144 (1987) 531-542.

[35] McLennan S. M., Taylor S. R., McCulloch M. T., Maynard J. B., "Geochemical and Nd–Sr isotopic composition of deep-sea turbidites: Crustal evolution and plate tectonic associations", Geochimica et Cosmochimica Acta 54 (1990) 2015–2050.

[36] Andersen T., "Detrital zircons as tracers of sedimentary provenance: limiting conditions from statistics and numerical simulation", Chemical Geology 216 (2005) 249-270.

[37] Fedo C. M., Sircombe K. N., Rainbird R. H., "Detrital zircon analysis of the sedimentary record", Reviews in Mineralogy and Geochemistry 53 (2003) 277-303.

[38] Haas G. J. L., de Andersen T., Vestin J., "Detrital zircon geochronology: new evidence for an old model for accretion of the Southwest Baltic Shield", Journal of geology 107 (1999) 569-586.

[39] Bingen B., Birkeland A., Nordgulen Q., Sigmond E. M., "Correlation of supracrustal sequences and origin of terranes in the Sveconorwegian orogen of SW Scandinavia: SIMS data on zircon in clastic metasediments", Precambrian Research 108 (2001) 293-318.

[40] Knudsen T. L., Andersen T., "Petrology and geochemistry of the Tromoy gneiss complex, South Norway, an alleged example of Proterozoic depleted lower continental crust", Journal of Petrology 40 (1999) 909-933.

[41] Williams I., "Response of detrital zircon and monazite, and their U–Pb isotopic systems, to regional metamorphism and host-rock partial melting, Cooma Complex, southeastern Australia", Australian Journal of Earth Sciences 48 (2001) 557-580.

[42] Davis Donald W., "U–Pb geochronology of Archean metasedimentary rocks in the Pontiac and Abitibi subprovinces, Quebec, constraints on timing, provenance and regional tectonics", Precambrian Research 115 (2002) 97-117.

[43] Goodge J. W., Myrow P., Williams I., Bowring S. A., "Age and provenance of the Beardmore Group, Antarctica: constraints on Rodinia supercontinent breakup", The Journal of geology 110 (2002) 393-406.

[44] Barr S., Davis D., Kamo S., White C., "Significance of U–Pb detrital zircon ages in quartzite from peri-Gondwanan terranes, New Brunswick and Nova Scotia, Canada", Precambrian Research 126 (2003) 123-145.

[45] Van Wyck N., Williams I., "Age and provenance of basement metasediments from the Kubor and Bena Bena Blocks, central Highlands, Papua New Guinea: constraints on the tectonic evolution of the northern Australian cratonic margin", Australian Journal of Earth Sciences 49 (2002) 565-577.

[46] Griffin W., Belousova E., Shee S., Pearson N., Oreilly S., "Archean crustal evolution in the northern Yilgarn Craton: U–Pb and Hf-isotope evidence from detrital zircons", Precambrian Research 131 (2004) 231-282.

[47] Jamshidi Badr M., "Dating of Precambrian Metasedimentary Rocks and Timing of their Metamorphism in the Soursat Metamorphic Complex (NW IRAN): Using LA–ICP-MS, U–Pb Dating of Zircon and Monazite", Journal of Sciences, Islamic Republic of Iran 21 (2010) 311-319.

[48] Barnes U.C., Cochran J. R., "Uranium removal in oceanic sediments and the oceanic U balance", Earth and Planetary Science Letters 97 (1990) 94-101.

[49] Nath B. N., Bau M., Ramalingeswara Rao B., Rao Ch. M., "Trace and rare earth elemental variation in Arabian Sea sediments through a transect across the oxygen minimum zone", Geochimica et Cosmochimica Acta 61 (1997) 2375-2388.

[50] Somayajulu B. L. K., Yadav D. N., Sarin M. M., "Recent sedimentary records from the Arabian Sea", Proceedings of the Indian Academy of Sciences 103 (1994) 315-327.

[51] Madhavaraju J., Ramasamy S., "Rare earth elements in limestones of Kallankurichchi Formation of Ariyalur Group, Tiruchirapalli Cretaceous, Tamil Nadu", Journal of the Geological Society of India 54 (1999) 291-301.

[52] Ernst T. W., "Geochemical facies analysis", Elsevier, Amsterdam (1970)152 p.

[53] Bjorlykke K., "Geochemical and mineralogical influence of Ordovician island arcs on epicontinental clastic sedimentation: a study of Lower Palaeozoic sedimentation in the Oslo region: Norway", Sedimentology 21 (1974) 251-272.

[54] Dill H., Teshner M., Wehner H., "Petrography, inorganic and organic geochemistry of Lower Permian Carboniferous fan sequences (Brandschiefer Series) FRG: constraints to their palaeogeography and assessment of their source rock potential", Chemical Geology 67 (1988) 307-325.

[55] Jones B., Manning D. C., "Comparison of geochemical indices used for the interpretation of paleo-redox conditions in Ancient mudstones", Chemical Geology 111 (1994) 111-129.

[56] Dill H., "Metallogenesis of early Paleozoic graptolite shales from the Graefenthal Horst (northern Bavaria-Federal Republic of Germany)", Economic Geology 81 (1986) 889-903.

[57] Dypvik H., "Geochemical compositions and depositional conditions of Upper Jurassic and Lower Cretaceous Yorkshire clays, England", Geological Magazine 121 (1984) 489-504.

[58] Horton B. K., Hassanzadeh J., Stockli D. F., Axen G. j., Gillis R. j., Guest B., Amini A., Fakhari M. D., Zamanzadeh S. M., Grove M., "Detrital zircon provenance of Neoproterozoic to Cenozoic deposits in Iran: Implications for chronostratigraphy and collisional tectonics", Tectonophysics 451 (2008) 97–122.