بررسی تغییرات نوار انرژی الکترون‌های مغزی برای شناسایی عیوب شبکه نانوالکتروسرامیک BaTiO3 آلاییده شده با غلظت‌های مختلف عنصر Nb

نوع مقاله : مقاله پژوهشی

نویسنده

آزمایشگاه فناوری نانو، مجتمع آموزش عالی اسفراین، اسفراین، خراسان شمالی، ایران

چکیده

در این پژوهش، عیوب شبکه بلوری نانوالکتروسرامیک BaTiO3 آلاییده شده، با مقادیر متفاوتی از عنصر پنج ظرفیتی Nb با طیف­سنج پوزیترونی بررسی گردید. کاهش طیف پس‌زمینه ناشی از یک سامانه تشخیص همزمانی در طیف‌سنجی پهن شدگی داپلری امکان بررسی سهم الکترون‌های مغزی با تکانه بالا را در فرایند نابودی پوزیترون در ساختار BT(1-x)O:Nbx (x=0, 0.03, 0.05, 0.07) را فراهم می­آورد. نتایج نشان می­دهد که نخست با افزایش ورود ناخالصی تا 05/0 درصد مولی، بدلیل جانشینی Nb با Ti از شدت نقص ها به ویژه نقص حجم باز کاسته شده و با افزایش بیشتر غلظت ناخالصی بر مقدار نقص تهیجا افزوده می­شود.       

کلیدواژه‌ها


عنوان مقاله [English]

Investigating of the energy band of core electrons to identify the defects of BaTiO3 nanoelectroceramic doped with different concentrations of Nb element

نویسنده [English]

  • Mahdi Ghasemifard
New modern energy Lab., Esfarayen University of Technology, Esfarayen, Iran
چکیده [English]

In this study, the relationship between the defects of BaTiO3 doped by different amounts of pentavalent element Nb was investigated by positron spectroscopy. The reduction of the background spectrum caused by a coincidence detection system in Doppler broadening spectroscopy allows the contribution of high-momentum core electrons in the process of positron annihilation in the BT(1-x)O:Nbx structure (x=0, 0.03, 0.05, 0.07) should be investigated. The results showed that initially by increasing impurity up to 0.05 mol% due to co-substitution of Nb with Ti, the amount of defects, especially open volume defects, is reduced and with further increase in concentration, the amount of vacancy defects increases.

کلیدواژه‌ها [English]

  • Barium Titanate
  • Doppler broadening spectrometer
  • Positron
  1. [1] Nuruddin M., Chowdhury R.A., Lopez-Perez N., Montes F.J., Youngblood J.P., Howarter J.A., "Influence of free volume determined by positron annihilation lifetime spectroscopy (PALS) on gas permeability of cellulose nanocrystal films", ACS applied materials & interfaces, 12(21), pp.24380-24389 (2020). [DOI:10.1021/acsami.0c05738]
  2. [1] Nuruddin M., Chowdhury R.A., Lopez-Perez N., Montes F.J., Youngblood J.P., Howarter J.A., "Influence of free volume determined by positron annihilation lifetime spectroscopy (PALS) on gas permeability of cellulose nanocrystal films", ACS applied materials & interfaces, 12(21), pp.24380-24389 (2020). [DOI:10.1021/acsami.0c05738]
  3. [2] Smedskjaer L.C., Legnini D.G., "A study on symmetrization of 2D ACAR positron annihilation data. Nuclear Instruments and Methods in Physics Research Section A: Accelerators", Spectrometers, Detectors and Associated Equipment, 292(2), pp.487-493 (1990). [DOI:10.1016/0168-9002(90)90406-V]
  4. [2] Smedskjaer L.C., Legnini D.G., "A study on symmetrization of 2D ACAR positron annihilation data. Nuclear Instruments and Methods in Physics Research Section A: Accelerators", Spectrometers, Detectors and Associated Equipment, 292(2), pp.487-493 (1990). [DOI:10.1016/0168-9002(90)90406-V]
  5. [3] Biganeh A., Kakuee O., Rafi-Kheiri H., "Positron Annihilation Spectroscopy of KCl (Zn) crystals", Applied Radiation and Isotopes, 166, p.109330 (2020). [DOI:10.1016/j.apradiso.2020.109330]
  6. [3] Biganeh A., Kakuee O., Rafi-Kheiri H., "Positron Annihilation Spectroscopy of KCl (Zn) crystals", Applied Radiation and Isotopes, 166, p.109330 (2020). [DOI:10.1016/j.apradiso.2020.109330]
  7. [4] Chryssos L., Hugenschmidt C., "Novel Data Analysis Tool for the Evaluation of Coincidence Doppler Broadening Spectra of the Positron-Electron Annihilation Line", arXiv preprint arXiv:2212.01292 (2022). [DOI:10.1016/j.nima.2023.168171]
  8. [4] Chryssos L., Hugenschmidt C., "Novel Data Analysis Tool for the Evaluation of Coincidence Doppler Broadening Spectra of the Positron-Electron Annihilation Line", arXiv preprint arXiv:2212.01292 (2022). [DOI:10.1016/j.nima.2023.168171]
  9. [5] Thorat A.V., Ghoshal T., Holmes J.D., Nambissan P.M.G., Morris M.A., "A positron annihilation spectroscopic investigation of europium-doped cerium oxide nanoparticles", Nanoscale, 6(1), pp.608-615 (2014). [DOI:10.1039/C3NR03936F]
  10. [5] Thorat A.V., Ghoshal T., Holmes J.D., Nambissan P.M.G., Morris M.A., "A positron annihilation spectroscopic investigation of europium-doped cerium oxide nanoparticles", Nanoscale, 6(1), pp.608-615 (2014). [DOI:10.1039/C3NR03936F]
  11. [6] Ghasemifard M., Ghamari M., "Probing the influence of temperature on defects in oxy-hydroxide ceramics by positron annihilation lifetime and coincidence Doppler broadening spectroscopy", Applied Physics A, 128(3), (2022) pp.1-10. [DOI:10.1007/s00339-022-05323-4]
  12. [6] Ghasemifard M., Ghamari M., "Probing the influence of temperature on defects in oxy-hydroxide ceramics by positron annihilation lifetime and coincidence Doppler broadening spectroscopy", Applied Physics A, 128(3), (2022) pp.1-10. [DOI:10.1007/s00339-022-05323-4]
  13. [7] Yen F.S., Hsiang H.I., Chang Y.H., "Cubic to tetragonal phase transformation of ultrafine BaTiO3 crystallites at room temperature", Japanese journal of applied physics, 34(11R), (1995) p.6149. [DOI:10.1143/JJAP.34.6149]
  14. [7] Yen F.S., Hsiang H.I., Chang Y.H., "Cubic to tetragonal phase transformation of ultrafine BaTiO3 crystallites at room temperature", Japanese journal of applied physics, 34(11R), (1995) p.6149. [DOI:10.1143/JJAP.34.6149]
  15. [8] Ghasemifard M., Ghamari M., "A modified set-up to reduce background spectra in the CDBS positron spectrometer", The European Physical Journal Plus, 136(12), pp.1-11 (2021). [DOI:10.1140/epjp/s13360-021-02196-z]
  16. [8] Ghasemifard M., Ghamari M., "A modified set-up to reduce background spectra in the CDBS positron spectrometer", The European Physical Journal Plus, 136(12), pp.1-11 (2021). [DOI:10.1140/epjp/s13360-021-02196-z]
  17. [9] Do Nascimento E., Vanin V.R., Maidana N.L., Helene O., "June. Coincidence doppler broadening of positron annihilation radiation in Fe", In Journal of Physics: Conference Series (Vol. 443, No. 1, p. 012024). IOP Publishing (2013). [DOI:10.1088/1742-6596/443/1/012024]
  18. [9] Do Nascimento E., Vanin V.R., Maidana N.L., Helene O., "June. Coincidence doppler broadening of positron annihilation radiation in Fe", In Journal of Physics: Conference Series (Vol. 443, No. 1, p. 012024). IOP Publishing (2013). [DOI:10.1088/1742-6596/443/1/012024]
  19. [10] Djourelov N., He C., Suzuki T., Shantarovich V.P., Ito Y., Kondo K., "Positron annihilation in polypropylene studied by lifetime and coincidence Doppler-broadening spectroscopy", Radiation Physics and Chemistry, 68(5), pp.689-695 (2003). [DOI:10.1016/S0969-806X(03)00442-0]
  20. [10] Djourelov N., He C., Suzuki T., Shantarovich V.P., Ito Y., Kondo K., "Positron annihilation in polypropylene studied by lifetime and coincidence Doppler-broadening spectroscopy", Radiation Physics and Chemistry, 68(5), pp.689-695 (2003). [DOI:10.1016/S0969-806X(03)00442-0]
  21. [11] Biganeh A., Kakuee O., Rafi-Kheiri H., "Positron Annihilation Spectroscopy of KCl (Zn) crystals", Applied Radiation and Isotopes, 166, p.109330 (2020). [DOI:10.1016/j.apradiso.2020.109330]
  22. [11] Biganeh A., Kakuee O., Rafi-Kheiri H., "Positron Annihilation Spectroscopy of KCl (Zn) crystals", Applied Radiation and Isotopes, 166, p.109330 (2020). [DOI:10.1016/j.apradiso.2020.109330]
  23. [12] Nagai Y., Takadate K., Tang Z., Ohkubo H., Sunaga H., Takizawa H., Hasegawa M., "Positron annihilation study of vacancy-solute complex evolution in Fe-based alloys", Physical Review B, 67(22), p.224202 (2003). [DOI:10.1103/PhysRevB.67.224202]
  24. [12] Nagai Y., Takadate K., Tang Z., Ohkubo H., Sunaga H., Takizawa H., Hasegawa M., "Positron annihilation study of vacancy-solute complex evolution in Fe-based alloys", Physical Review B, 67(22), p.224202 (2003). [DOI:10.1103/PhysRevB.67.224202]
  25. [13] Kobayashi Y., Sato K., Yamawaki M., Michishio K., Oka T., Washio M., "Positrons and positronium in macromolecules: Consequences of different charge states", Radiation Physics and Chemistry, 202, p.110590 (2023). [DOI:10.1016/j.radphyschem.2022.110590]
  26. [13] Kobayashi Y., Sato K., Yamawaki M., Michishio K., Oka T., Washio M., "Positrons and positronium in macromolecules: Consequences of different charge states", Radiation Physics and Chemistry, 202, p.110590 (2023). [DOI:10.1016/j.radphyschem.2022.110590]