Temperature condition, source of bismuth and mechanism of Au-scavenging by Bi phases in the Atash-Anbar gold deposit (south Qazvin)

Document Type : Original Article

Authors

Abstract

Based on thermodynamic modeling, chalcophile elements with low melting point such as bismuth play an important role in removing precious elements (such as gold, silver and platinum group elements) from the hydrothermal fluid, which known as the Liquid Bismuth Collector Model (LBCM). In this contribution, the chemical composition of freibergitesulfosalt, Bi-bearing sulfides and native gold particles (20 to 100 µm in size) in the quartz-sulfide breccia vein (as the highest grade of Au-Bi vein) from the Atash-Anbar gold deposit (south Qazvin) were investigated. The temperature was estimated by using fahloregeothermometer and calculation of Ag/(Ag+Cu) and Zn/(Zn+Fe) molar ratios in feribergite. Consequently temperature of ore forming was between 200-250 oC. The bismuth in the polymetallic veins of the Atash-Anbar deposit originated from plagioclase of the dacite porphyry host rock. Bismuth has been released from their composition. During alteration of plagioclase to the kaolinite±sericite, the oxidation-sulfidation reactions of hydrothermal fluid by ferroan dolomites gangue (as oxidizing agent and stable buffering phase) caused instability of Bi2S2(OH)2 and HBi2S4– complexes and converted Bi3+ to Bi0, based on the electrons released from this process Au+ was converted to (invisible gold) to Au0 (native gold) and absorbed by the bismuth phase.

Keywords


[1] Senanayake G., “Review of rate constants for thiosulphate leaching of gold from ores, concentrates and flat surfaces: Effect of host minerals and pH". Minerals Engineering (2007) 20, 1–15.

[2] Ciobanu C.L., Cook N.J., Utsunomiya S., Kogagwa M., Green L., Gilbert S., Wade B., “Gold-telluride nanoparticles revealed in arsenic-free pyrite”. American Mineralogist (2012) 97, 1515–1518.

[3] Cook N.J., Chryssoulis S.L., “Concentrations of invisible gold in the common sulfides”. Canadian Mineralogist (1990) 28, 1–16.

[4] Rabiee A., Rossetti F., Tecce F., Asahara Y., Azizi H., Glodny J., Lucci F., Nozaem R., Opitz J Selby D., “Multiphase magma intrusion, ore-enhancement and hydrothermal carbonatisation in the Siah-Kamar porphyry Mo deposit, Urumieh-Dokhtar magmatic zone, NW Iran”. Ore Geology Reviews (2019) 110, 102930.

[5] Sengör A.M.C., “Tectonics of the Tethysides: orogenic collage development in a collisional setting”. Earth and Planetary Science Letters (1987) 15, 213–244.

[6] Omrani J., Agard P., Whitechurch H., Benoit M., Prouteau G., Jolivet L., “Arc-magmatism and subduction history beneath the Zagros Mountains, Iran: A new report of adakites and geodynamic consequences”. Lithos (2008) 106, 380–398.

[7] Pirooz H., “Report of final exploration stage in the Atash-Anbar polymetallic deposit”. Industry and mines ministry of the Qazvin province (2015) 55p.

[8] Alaei-Moghtader N., “Mineralogy, fluid inclusions and geochemistry of stable isotopes in Atash-Anbar polymetallic deposit, SW Danesfahan, Qazvin Province”. MSc thesis. Bu-Ali Sina University, Hamedan, (2020) 181 p.

[9] Nogol Sadat A., Hushmand Zadeh A., “Saveh quadrangle geological map, scale 1:250,000”. Geological Survey of Iran (1984).

[10] Eghlimi B., “Danesfahan geological map, scale 1:100,000”. Geological Survey of Iran (2000).

[11] Bolourchi M.H., “Etude geologique de la region d'Avaj (NW de l'Iran), stratigraphie et tectique”. Geological Survey of Iran (1975).

[12] Testa F.J., Zhang L., Cooke D.R., “Physicochemical conditions of formation for bismuth mineralization hosted in a magmatic-hydrothermal breccia complex: An example from the Argentine Andes” Minerals (2018) 8, 486-507.

[13] Ramdohr P., "The ore minerals and their intergrowths", Pergamon press (1980) 1205p.

[14] Cook N.J., Spry P.G., Vokes F.M., "Mineralogy and paragenetic relationships among sulphosalts and related minerals in the Bleikvassli Zn-Pb-(Cu) deposit, Nordland, Norway", Mineral Deposita (1998) 34, 35-56.

[15] Marsden J., House I., “The chemistry of gold extraction” SME press (2006) 490p.

[16] Sack R.O., “Internally consistent database for sulfides and sulfosalts in the system Ag2S-Cu2S-ZnS-FeS-Sb2S3-As2S3” Geochimica et Cosmochimica Acta (2005) 69, 1157–1164.

[17] Zhai D., Williams-Jones A.E., Liu J., Selby D., Voudouris P.C., Tombros S., Li K., Li P., Sun H., “The genesis of the giant Shuangjianzishan epithermal Ag-Pb-Zn deposit, Inner Mongolia, Northeastern China”. Economic Geology (2020) 115, 101–128.

[18] Rudnick R.L., Gao S., “Composition of the continental crust”. In: Rudnick, R.L., (Ed.), The Crust. Treatise on Geochemistry (2005) 3, 1-64.

[19] Liu Y.J., Cao L.M., Liu Z.L., “Elementary Geochemistry”. Geological Publishing House, Beijing, (1984) 548p.

[20] Ye L., Liu T., Yang Y., Gao W., Pan Z., Bao T., “Petrogenesis of bismuth minerals in the Dabaoshan Pb–Zn polymetallic massive sulfide deposit, northern Guangdong Province, China”. Journal of Asian Earth Sciences (2014) 82, 1-9.

[21] Huang D.H., Ding X.S., Wu C.Y., “Mineral characteristics and occurrence of gold, silver and bismuth of the Caijiaying leadzinc-silver deposit, Hebei province”. Acta Geologica Sinica (1991) 65, 127-140.

[22] Wang P.A., Kaneda H., Ding S.J., Zhang X.W., Liao X.J., Dong F.X., Li Z.J., Liu X.C., Lai Y., “Geology and mineralogy of the Baolun hydrothermal gold deposit in the Hainan Island, South China”. Resource Geology (2006) 56, 157-166.

[23] Turekian K.K., Wedepohl K.H., “Distribution of the elements in some major units of the earth crust”. Geological Society of American Bulletin (1961) 72, 175–192.

[24] Tooth B., Brugger J., Ciobanu C., Liu W., “Modeling of gold scavenging by bismuth melts coexisting with hydrothermal fluids”. Geology (2008) 36, 815–818.

[25] Tooth B., Ciobanu C.L., Green L., O Neill B., Brugger J., “Bi-melt formation and gold scavenging from hydrothermal fluids: An experimental study” Geochimica et Cosmochimica Acta (2011) 75, 5423–5443.

[26] Douglas N., Mavrogenes J., Hack A., England R., “The liquid bismuth collector model: an alternative gold deposition mechanism”. In Understanding planet Earth; searching for a sustainable future; on the starting blocks of the third millennium, 15th Australian Geological Convention (eds. C. G. Silbeck and T. C. T. Hubble). Geological Society of Australia, Sydney (2000) 135p.

[27] Acosta-Góngora P., Gleeson S.A., Samson I.M., Ootes L., Corriveau L., “Gold refining by bismuth melts in the Iron Oxide-Dominated NICO Au-Co-Bi (±Cu±W) deposit, NWT, Canada”. Economic Geology (2015) 110, 291–314.

[28] Skirrow R.G., Walshe J.L., “Reduced and oxidized Au-Cu-Bi iron oxide deposits of the Tennant Creek inlier, Australia: An integrated geologic and chemical model”. Economic Geology (2002) 97, 1167−1202.

[29] Zhou H., Sun X., Cook N.J., Lin H., Fu Y., Zhong R., Brugger J., “Nano- to micron-scale particulate gold hosted by magnetite: a product of gold scavenging by bismuth melts”. Economic Geology (2017) 112, 993–1010.