Mineralogy and the lanthanide elements geochemistry of the Baharieh kaolin deposit, east Kashmar, NE Iran

Document Type : Original Article

Authors

Abstract

The Baharieh kaolin deposit (east Kashmar, Khorasan Razavi Province) is the product of alteration of dacitic rocks (Eocene) and is located in the Khaf-Kashmar-Bardaskan metallogenic belt. Field observations show that the development of this deposit was controlled by the tectonic system of the area and the presence of silica cap is the most important geological feature of this deposit. Mineralogical studies, using different analytic techniques (such as XRD, SEM-EDS, FE-SEM, DTA and TGA), indicate the presence of kaolinite, halloysite, illite, quartz, alunite, jarosite, muscovite, albite, gypsum, topaz, anhydrite, rutile, galena, zircon and hematite in the kaolin samples. Calculations of mass changes with the assumption of Al as index immobile element show that the development of the kaolinization process has been accompanied with intense enrichment of LREE relative to HREE. This phenomenon indicates the preferential adsorption of LREE by kaolinite, halloylsite, alunite, hematite, and jarosite and the relatively low activity of complexing ions in rock-altering fluids. Correlation coefficients between elements indicate that kaolinite, rutile, manganese oxides, and secondary phosphates have played an important controlling role in the distribution and fixation of lanthanides. Occurrence of Eu negative anomaly in relation to the alteration of feldspars by relatively high-temperature fluids along with the occurrence of positive Ce anomaly indicate the effects of low-temperature aqueous system on the Baharieh kaolin deposit.

Keywords


[1] Schroeder P. A., Erickson, G., "Kaolin: From ancient porcelains to nanocomposites", Elements 10 (2014) 163-164.

[2] Najmi F., Malekzadeh Shafaroudi A., Karimpour M., "Investigation of mineralizing fluids characteristics in Bahariyeh copper mine, east of Kashmar" Third Biennial Iranian National Fluid Inclusion Conference, University of Zanjan, Iran (2019).

[3] Behroozi A., Alavi Naeeni M., "Geologic map of Fayzabad, scale1:100000", Geological Survey of Iran (1987).

[4] Karimpour M., Saadat S., Malekzadeh Shsfaroudi, A., "Identification and introduction of Fe oxides Cu-Au and magnetite mineralization related to Khaf-Kashmar-Bardaskan volcanic-plutonic belt", 21th Earth Science Conference, Tehran, Iran (2002).

[5] Rezaie H., Tale Fazel E., Niroomand S., "Mineralization and ore genesis of the Baharieh Cu deposit (NE Kashmar) based on mineralogy, geochemistry and fluid inclusion evidences", Scientific Quarterly Journal, Geosciences 28 (2019) 43-58.

[6] Shafaii Moghadam H., Li X. H., Ling X. X., Santos J. F., Sternd R. J., Li Q. L., Ghorbani G., "Eocene Kashmar granitoids (NE Iran): Petrogenetic constraints from U–Pb zircon geochronology and isotope geochemistry", Lithos 216-217 (2015) 118-135.

[7] Almasi A., Karimpour M., Ebrahimi Nasrabadi K., Rahimi B., "Structural analysis, alteration, Au-Cu mineralization and fluid inclusion study at expanding Jog of NE Kashmar", Journal of Advanced Applied Geology 25 (2017) 1-19.

[8] Brown M., Gallagher P., "Handbook of Thermal Analysis and Calorimetry, Volume 2. Applications to Inorganic and Miscellaneous Materials", Elsevier Science (2003) 1-492.

[9] Gresens R. L., "Composition-volume relationships of metasomatism", Chemical Geology 2 (1967) 47-55.

[10] Grant J. A., " Isocon analysis: A brief review of the method and applications", Physics and Chemistry of the Earth 30 (2005) 997-1004.

[11] Nesbitt H. W., "Mobility and fractionation of rare earth elements during weathering of a granodiorite", Nature 279 (1979) 206-210.

[12] MacLean W. H., Kranidiotis P., "Immobile elements as monitors of mass transport in hydrothermal alteration: Phelps Dodge massive sulfde deposit, Matagami", Economic Geology 82 (1987) 951-962.

[13] MacLean W. H., "Mass change calculations in altered rock series", Mineralium Deposita 25(1990) 44-49.

[14] Nesbitt H. W., Markovics G., "Weathering of granodioritic crust, long-term storage of elements in weathering profiles, and petrogenesis of siliciclastic sediments", Geochimica et Cosmochimica Acta 61 (1997) 1653-1670.

[15] Galán E., Fernández-Caliani J. C., Miras A., Aparicio P., "New insights on mineralogy and genesis of kaolin deposits: The Burela kaolin deposit (Northwestern Spain)", Clay Minerals 42 (2007) 341-352.

[16] Anders E., Grevesse N., "Abundances of the elements: meteoritic and solar", Geochimica et Cosmochimica Acta 53 (1989) 197-224.

[17] Dill H. G., Bosse H. R., Kassbohm J., "Mineralogical and chemical studies of volcanic-related argillaceous industrial minerals of the Central America Cordillera (Werstern Salvador)", Economic Geology 95 (2000) 517-538.

[18] Grecco L. E., Marfil S. A., Maiza P. J., "Mineralogy and geochemistry of hydrothermal kaolins from the Adelita mine, Patagonia (Argentina); relation to other mineralization in the area", Clay Minerals 47 (2012) 131-146.

[19] Fulignati P., Gioncada A., Sbrana A., "Rare earth element (REE) behaviour in the alteration facies of the active magmatichydrothermal system of Vulcano (Aeolian Islands, Italy)", Journal of Volcanology and Geothermal Research 88 (1999) 325-342.

[20] Siahcheshm K., Abedini A., Shahsavari M., "Mineralogy and geochemistry of REEs in Anbagh alterd sketch, east of Ahar, NW Iran", Iranian Journal of Crystallography and Mineralogy 24 (2017) 703-714.

[21] Abedini A., "Mineralogy and geochemistry of the Hizeh-Jan kaolin deposit, northwest of Varzaghan, East-Azarbaidjan Province, NW Iran", Iranian Journal of Crystallography and Mineralogy 24 (2017) 647-660.

[22] Kikawada Y., Ugura M., Oi T., Honda T., "Mobility of lanthanides accompanying the formation of alunite group minerals", Journal Radioanalytical Nuclear Chemistry 261 (2004) 651-659.

[23] Aja S. U., "The sorption of the rare earth element, Nd, onto kaolinite at 25°C", Clays and Clay Minerals 46 (1998) 103-109.

[24] Walter A. V., Nahon D., Flicoteaux R., Girard J. P., Melfi A., "Behaviour of major and trace elements and fractionation of REE under tropical weathering of typical weathering of typical apatite-rich carbonatite from Brazil", Planetary Science Letters 303 (1995) 591-601.

[25] Abedini A., " The mineralogical and geochemical control on the distribution and mobilization of trace and rare earth elements during development of argillic alteration zone: A case study from northeast of Kharvana, NW Iran", Iranian Journal of Crystallography and Mineralogy 25 (2017) 353-366.

[26] Taylor Y., McLennan S. M., "The continental crust: Its composition and evolution". 1st ed. Oxford, UK: Blackwell (1985)

[27] Kadir S., Kulah T., Eran M., Önagil N., Gurel, A., "Minerlogical and geochemical characteristics and genesis of the Gözelyurt alunite-bearing kaolinite deposit within the late Miocene Gördeles ignimbrite, central Anatolia, Turkey", Clays and Clay Minerals 62 (2014) 477-499.

[28] Salvi S., Williams-Jones A. E., "The role of hydrothermal processes in concentrating high-field strength elements in the Strange Lake peralkaline complex, northeastern Canada", Geochimica et Cosmochimica Acta 60 (1996) 1917-1932.