[1] Heidari SM., Mossavi Makooi SA., Mirzakhanian M., Rasoli F., Ghaderi M., Abadi AR., A review of tectono-magmatic evolution and gold metallogeny in the inner parts of Zagros orogeny:a tectonic model for the major gold deposits,w Iran, Eurasian Mining,1(2006) 3-20.
[2] Hushmandzadeh A., Alavi-Naini M., Haghipour A., “Geological evolution of Torud area with 1:250000 scale map of Torud, Tehran, (1978), Geological Survey of Iran (in Persian).
[3] Eshraghi S.A, Jalali A, “Geological map of Moalleman”, 1:100,000 ,Geological (2006), Survey of Iran.
[4] Najjaran M., “Geochemistry and genesis of Baghu turquoise deposit (Damghan)”, M.Sc. Thesis, Shiraz University, Shiraz, Iran, (2000)150 pp, (in Persian).
[5] Liaghat S., sheykhi V. and Najjaran M., “Petrology, gheochemistry and genesis of Baghu turquoise, Damghan”, Journal of Science, University of Tehran, (2008)133-142, (in Persian).
[6] Ghorbani Gh., “Petrology of magmatic rocks from south of Damghan”, Unpublished Ph.D thesis in geology/petrology, Faculty of earth science, Shahid Beheshti University, (2005) 356 p
[7] Ghorbani G., Vossoghi Abedini M., Ghasemi H., “Geothermobarometry of granitoids from Torud-Chah shirin area (south Damghan)”, Iranian Journal of Crystallography and Mineralogy 13-1 (2005) 95-106.
[8] Ghorbani G., “Chemical composition of minerals and genesis of mafic microgranular enclaves in intermediate - acidic plutonic rocks from Kuh -e- Zar area (southeast of Semnan”, Iranian Journal of Crystallography and Mineralogy 15-2 (2007) 293-310.
[9] Emamjomeh A., Jahangiri A., Moazzen M., “Geochemistry and geological setting of turquoise hosted intrusive bodies in Damghan (Baghou) turquoise-gold mine, Torud- Chah Shirin volcano-plutonic segment”, Iranian Journal of Crystallography and Mineralogy (under published).
[10] Aghanabati A., “Geology of Iran”, Geological survey of Iran, (2004), ISBN: 9646178138.
[11] Khademi M., “Structural characteristics and tectonic setting of Toroud area, south of Damghan”, Unpublished Ph.D thesis in Tectonic, Shahid Beheshti University, Tehran, (2007) 209 pp.
[12] Niroomand S., Hassanzadeh J., Tajeddin H.A., Asadi S., “Hydrothermal evolution and isotope studies of the Baghu intrusion-related gold deposit, Semnan province, north central Iran”, Ore Geology Reviews, (2018), doi: 10.1016/j.oregeorev.2018.01.015
[13] Moradi S., Hassannejad A.K., Ghorbani G., “Investigation of mineralogy and geothermometry of quartz and tourmaline veins at the Baghu area, southeast of Damghan”, Iranian Journal of Crystallography and Mineralogy 24-4 (2017) 661-674, (in Persian).
[14] Taghipour B., “Tourmaline-turquoise paragenesis in the phyllic alteration zone, copper, gold deposit, Kuh-Zar, South of Semnan”, Iranian Journal of Crystallography and Mineralogy. 23-1(2015)3-14.
[15] Whitney D.L., Evans B.W.,” Abbreviations for names of rock-forming minerals’, American Mineralogist, 95, (2010) 185–187.
[16] De la Roche H., Leterier J., Grandclaude P., Marchal M., “classification of volcanic and plutonic rocks using R1R2-diagram and major-element analyses — Its relationships with current nomenclature”, Chemical Geology, 29 (1980) 183—210.
[17] Rouhbakhsh Iradi P., Karimpour M. H., Malekzadeh Shafaroudi A., “Mineralization and fluid inclusion studies in the northern part of the Kuh Zar Au-Cu deposit, Damghan (Firuzeh-Gheychi area)”, Iranian Journal of Crystallography and Mineralogy 26-3 (2018) 611-624.
[18] Harker A., “The natural history of igneous rocks”, Methuen and Co. London (1909).
[19] Sun S.S., McDonough W.F., “Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes”, Geological Society of London, No. 42- 1 (1989) 313-345.
[20] Rudnick R.L., Gao S., “Composition of the continental crust: Treatise on Geochemistry”, 3,) 2003(1–64.
[21] Taylor S.R., McLennan S.M., “The Continental Crust: Its Composition and Evolution: An Examination of the Geochemical Record Preserved in Sedimentary Rocks”, Oxford, Blackwell Scientific, (1985) 312 p.
[22] Li J.Y., Niu Y.L., Hu Y., Chen S., Zhang Y., Duan M., Sun P., “Origin of the late Early Cretaceous granodiorite and associated dioritic dikes in the Hongqilafu pluton, northwestern Tibetan Plateau:a case for crust-mantle interaction”, Lithos, 260 (2016) 300-314.
[23] Baxter S., Feely M., “Magma mixing and mingling textures in granitoid: examples from the Galway granite, Connemara, Ireland”, Mineralogy and Petrology, 76 (2002) 63-77.
[24] Wilson M., “Igneous petrogenetic”, Chapman & Hall, (1989) 466p.
[25] Henderson P., “Inorganic geochemistry”, Pergamon, Oxford,)1982( 353 p.
[26] Rolinson H.R., “Using geochemical data: Evaluation, presentation, interpretation”, Longman Scientific and Technical, London (1993).
[27] Janousˇek V., Braithwaite C.J.R., Bowes D.R., Axel Gerdes A., “Magma-mixing in the genesis of Hercynian calc-alkaline granitoids: an integrated petrographic and geochemical study of the Sa´zava intrusion, Central Bohemian Pluton, Czech Republic”, Lithos 78 (2004) 67– 99.
[28] Inger S., Harris N. B. W., “Geochemical constraints on leucogranite magmatism in the Langtang Valley, Nepal Himalaya”, Journal of Petrology,34 (1993) 345–368.
[29] Davidson J., Turner S., Plank T., “Dy/Dy*: Variations Arising from Mantle Sources and Petrogenetic Processes”, Journal of Petrology, 54(3), (2013) 525-535.
[30] Jarrar G., Manton W.I., Stern R.J., Zachmann D., “Late Neoproterozoic A-type granites in the northernmost Arabian-Nubian Shield formed by fractionation of basaltic melts”, Chemie der Erde Gheochemistry (2006).
[31] Chappell B.W., A.J.R. White, “I- and S-type granites in the Lachlan Fold Belt”, Earth Environ Sci Trans R Soc Edinb 83(1992) 1–26.
[32] Pitcher W.S., “The Nature and Origin of Granite”, Springer Netherlands (1997).
[33] Vernon R.H., “Crystallization and hybridism in microgranitoid enclave magmas: microstructural evidence”, J. Geophys. Res. 95 (1990) 17849 – 17859.
[34] Treuil M., Joron J.L., “Utilisation des elements hygromag-matophiles pour la simplification de la modelisation quantitative des processus magmatiques. Exemples de l’Afar et de la Dorsale Medioatlantique. Rend. Soc”. Ital. Mineral. Petrol. 31 -1, (1975) 125–174.
[35] Singer B.S., Leeman W.P., Thirlwal M.F., Rogers N.W., “Does Fracture Zone Subduction Increase Sediment Flux and Mantle Melting in Subduction Zones? Trace Element Evidence from Aleutian Arc Basalt” In book: Subduction Top to Bottom Edition: Monograph 96 Publisher: American Geophysical Union Editors: G.E. Bebout, D. Scholl, S. Kirby, J.P. Platt (1996).
[36] Karsli O., Chen B., Aydin F., Sen C., “Geochemical and Sr–Nd–Pb isotopic compositions of the Eocene Dölek and Sariçiçek Plutons, Eastern Turkey: Implications for magma interaction in the genesis of high-K calc-alkaline granitoids in a post-collision extensional setting”, Lithos, 98 -1-4, (2007)67-96.
[37] Kaygusuz A., Aslan Z., Aydınçakır E., Yücel C., Gücer M.A., Şen C., “Geochemical and Sr-Nd-Pb isotope characteristics of the Miocene to Pliocene volcanic rocks from the Kandilli area, Eastern Anatolia (Turkey): Implications for magma evolution in extension-related origin”, Lithos, 296/299 (2018), 332-351.
[38] Didier J., Barbarin B., “The different types of enclaves in granites—nomenclature. In: Didier, J., Barbarin, B. (Eds.), Enclaves and Granite Petrology”, Elsevier, Amsterdam, (1991)19 – 24.
[39] Vernon R.H., „Microgranitoid enclaves in granites–globules of hybrid magma quenched in a plutonic environment“, Nature 309, (1984) 438 – 439.
[40] Reid J.B., Evans J.O .C., Fates D.G., “Magma mixing in granitic rocks of the central Sierra Nevada, California“, Earth and Planetary Science Letters, 66 (1983) 243-261.